{"id":"https://openalex.org/W3090725241","doi":"https://doi.org/10.1109/icra40945.2020.9196631","title":"Path Planning in Dynamic Environments using Generative RNNs and Monte Carlo Tree Search","display_name":"Path Planning in Dynamic Environments using Generative RNNs and Monte Carlo Tree Search","publication_year":2020,"publication_date":"2020-05-01","ids":{"openalex":"https://openalex.org/W3090725241","doi":"https://doi.org/10.1109/icra40945.2020.9196631","mag":"3090725241"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra40945.2020.9196631","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2001.11597","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5016368979","display_name":"Stuart Eiffert","orcid":"https://orcid.org/0000-0002-2157-2724"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stuart Eiffert","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032411105","display_name":"He Kong","orcid":"https://orcid.org/0000-0002-1382-4186"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He Kong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022836011","display_name":"Navid Pirmarzdashti","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Navid Pirmarzdashti","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5004268965","display_name":"Salah Sukkarieh","orcid":"https://orcid.org/0000-0003-1173-9268"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Salah Sukkarieh","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":14.912,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":35,"citation_normalized_percentile":{"value":0.963442,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":"10263","last_page":"10269"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11500","display_name":"Evacuation and Crowd Dynamics","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11500","display_name":"Evacuation and Crowd Dynamics","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/crowd-simulation","display_name":"Crowd Simulation","score":0.60988224},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.5750013},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.5487108},{"id":"https://openalex.org/keywords/crowding","display_name":"Crowding","score":0.4644487}],"concepts":[{"id":"https://openalex.org/C2777852691","wikidata":"https://www.wikidata.org/wiki/Q13430821","display_name":"Crowds","level":2,"score":0.8325772},{"id":"https://openalex.org/C46149586","wikidata":"https://www.wikidata.org/wiki/Q11785332","display_name":"Monte Carlo tree search","level":3,"score":0.79346955},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77758634},{"id":"https://openalex.org/C81074085","wikidata":"https://www.wikidata.org/wiki/Q366872","display_name":"Motion planning","level":3,"score":0.7772994},{"id":"https://openalex.org/C45617602","wikidata":"https://www.wikidata.org/wiki/Q465266","display_name":"Crowd simulation","level":3,"score":0.60988224},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.5750013},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.560489},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.55787235},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5549041},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.5487108},{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.53663707},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.496471},{"id":"https://openalex.org/C149333683","wikidata":"https://www.wikidata.org/wiki/Q5189188","display_name":"Crowding","level":2,"score":0.4644487},{"id":"https://openalex.org/C2777113093","wikidata":"https://www.wikidata.org/wiki/Q221488","display_name":"Pedestrian","level":2,"score":0.45490536},{"id":"https://openalex.org/C2780864053","wikidata":"https://www.wikidata.org/wiki/Q5147495","display_name":"Collision avoidance","level":3,"score":0.43746418},{"id":"https://openalex.org/C13662910","wikidata":"https://www.wikidata.org/wiki/Q193139","display_name":"Trajectory","level":2,"score":0.4113196},{"id":"https://openalex.org/C19499675","wikidata":"https://www.wikidata.org/wiki/Q232207","display_name":"Monte Carlo method","level":2,"score":0.4087828},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.28379884},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.27870885},{"id":"https://openalex.org/C121704057","wikidata":"https://www.wikidata.org/wiki/Q352070","display_name":"Collision","level":2,"score":0.2622851},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12845296},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.08529928},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.0},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra40945.2020.9196631","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2001.11597","pdf_url":"https://arxiv.org/pdf/2001.11597","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2001.11597","pdf_url":"https://arxiv.org/pdf/2001.11597","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.79,"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1625390266","https://openalex.org/W192919555","https://openalex.org/W1999131722","https://openalex.org/W2002440441","https://openalex.org/W2064675550","https://openalex.org/W2072956256","https://openalex.org/W2082585576","https://openalex.org/W2117211893","https://openalex.org/W2126316555","https://openalex.org/W2127617835","https://openalex.org/W2167052694","https://openalex.org/W2424778531","https://openalex.org/W2461132327","https://openalex.org/W2599174273","https://openalex.org/W2604216058","https://openalex.org/W2614010283","https://openalex.org/W2766765925","https://openalex.org/W2766836212","https://openalex.org/W2804827665","https://openalex.org/W2883602772","https://openalex.org/W2890001928","https://openalex.org/W2963809389","https://openalex.org/W2964319688","https://openalex.org/W2966934151","https://openalex.org/W2970140906","https://openalex.org/W2972131019","https://openalex.org/W2976074605","https://openalex.org/W3106257603"],"related_works":["https://openalex.org/W4230189742","https://openalex.org/W3043995842","https://openalex.org/W2944838502","https://openalex.org/W2911613207","https://openalex.org/W2559730559","https://openalex.org/W2535198484","https://openalex.org/W2094931707","https://openalex.org/W2077952221","https://openalex.org/W2060401867","https://openalex.org/W2036586770"],"abstract_inverted_index":{"State":[0],"of":[1,32,68,101,125,141,150,164],"the":[2,78,91,98,107,144,162],"art":[3],"methods":[4,134],"for":[5,23,135],"robotic":[6,95],"path":[7,47,121],"planning":[8,48,76],"in":[9,34,130,138],"dynamic":[10],"environments,":[11],"such":[12],"as":[13],"crowds":[14],"or":[15],"traffic,":[16],"rely":[17],"on":[18],"hand":[19],"crafted":[20],"motion":[21,113],"models":[22,26],"agents.":[24],"These":[25],"often":[27],"do":[28],"not":[29],"reflect":[30],"interactions":[31],"agents":[33],"real":[35,157],"world":[36,158],"scenarios.":[37],"To":[38],"overcome":[39],"this":[40,42],"limitation,":[41],"paper":[43],"proposes":[44],"an":[45],"integrated":[46],"framework":[49,109],"using":[50,86],"generative":[51,87],"Recurrent":[52],"Neural":[53],"Networks":[54],"within":[55],"a":[56,65,102,139],"Monte":[57],"Carlo":[58],"Tree":[59],"Search":[60],"(MCTS).":[61],"This":[62,81],"approach":[63],"uses":[64],"learnt":[66],"model":[67],"social":[69],"response":[70,100],"to":[71,89,146,160],"predict":[72],"crowd":[73,140],"dynamics":[74],"during":[75,116],"across":[77],"action":[79],"space.":[80],"extends":[82],"our":[83,126,165],"recent":[84],"work":[85],"RNNs":[88],"learn":[90],"relationship":[92],"between":[93],"planned":[94],"actions":[96],"and":[97],"likely":[99],"crowd.":[103],"We":[104,153],"show":[105],"that":[106],"proposed":[108],"can":[110],"considerably":[111],"improve":[112],"prediction":[114],"accuracy":[115],"interactions,":[117],"allowing":[118],"more":[119],"effective":[120],"planning.":[122],"The":[123],"performance":[124],"method":[127],"is":[128],"compared":[129],"simulation":[131],"with":[132],"existing":[133],"collision":[136],"avoidance":[137],"pedestrians,":[142],"demonstrating":[143],"ability":[145],"control":[147],"future":[148],"states":[149],"nearby":[151],"individuals.":[152],"also":[154],"conduct":[155],"preliminary":[156],"tests":[159],"validate":[161],"effectiveness":[163],"method.":[166]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3090725241","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":10},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":8},{"year":2020,"cited_by_count":6}],"updated_date":"2025-04-18T19:27:36.630224","created_date":"2020-10-08"}