{"id":"https://openalex.org/W2967578475","doi":"https://doi.org/10.1109/icra.2019.8794048","title":"Joint Inference of Kinematic and Force Trajectories with Visuo-Tactile Sensing","display_name":"Joint Inference of Kinematic and Force Trajectories with Visuo-Tactile Sensing","publication_year":2019,"publication_date":"2019-05-01","ids":{"openalex":"https://openalex.org/W2967578475","doi":"https://doi.org/10.1109/icra.2019.8794048","mag":"2967578475"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra.2019.8794048","pdf_url":null,"source":{"id":"https://openalex.org/S4363607759","display_name":"2022 International Conference on Robotics and Automation (ICRA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1903.03699","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5013135315","display_name":"Alexander Lambert","orcid":"https://orcid.org/0000-0001-7089-2647"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Alexander Sasha Lambert","raw_affiliation_strings":["Georgia Institute of Technology, Robot Learning Lab, USA"],"affiliations":[{"raw_affiliation_string":"Georgia Institute of Technology, Robot Learning Lab, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014515988","display_name":"Mustafa Mukadam","orcid":"https://orcid.org/0000-0002-5683-1642"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mustafa Mukadam","raw_affiliation_strings":["Georgia Institute of Technology, Robot Learning Lab, USA"],"affiliations":[{"raw_affiliation_string":"Georgia Institute of Technology, Robot Learning Lab, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053446613","display_name":"Balakumar Sundaralingam","orcid":"https://orcid.org/0000-0003-3106-4755"},"institutions":[{"id":"https://openalex.org/I223532165","display_name":"University of Utah","ror":"https://ror.org/03r0ha626","country_code":"US","type":"education","lineage":["https://openalex.org/I223532165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Balakumar Sundaralingam","raw_affiliation_strings":["Robotics Center and the School of Computing, University of Utah, USA"],"affiliations":[{"raw_affiliation_string":"Robotics Center and the School of Computing, University of Utah, USA","institution_ids":["https://openalex.org/I223532165"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017897684","display_name":"Nathan Ratliff","orcid":null},"institutions":[{"id":"https://openalex.org/I4210127875","display_name":"Nvidia (United States)","ror":"https://ror.org/03jdj4y14","country_code":"US","type":"company","lineage":["https://openalex.org/I4210127875"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nathan Ratliff","raw_affiliation_strings":["NVIDIA, USA"],"affiliations":[{"raw_affiliation_string":"NVIDIA, USA","institution_ids":["https://openalex.org/I4210127875"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110797782","display_name":"Byron Boots","orcid":null},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Byron Boots","raw_affiliation_strings":["Georgia Institute of Technology, Robot Learning Lab, USA"],"affiliations":[{"raw_affiliation_string":"Georgia Institute of Technology, Robot Learning Lab, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5108257764","display_name":"Dieter Fox","orcid":"https://orcid.org/0009-0009-4694-9127"},"institutions":[{"id":"https://openalex.org/I201448701","display_name":"University of Washington","ror":"https://ror.org/00cvxb145","country_code":"US","type":"education","lineage":["https://openalex.org/I201448701"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dieter Fox","raw_affiliation_strings":["Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA"],"affiliations":[{"raw_affiliation_string":"Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA","institution_ids":["https://openalex.org/I201448701"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":7.215,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":25,"citation_normalized_percentile":{"value":0.999856,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10653","display_name":"Robotic Grasping and Learning from Demonstration","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10653","display_name":"Robotic Grasping and Learning from Demonstration","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10914","display_name":"Tactile Perception and Cross-modal Plasticity","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10784","display_name":"Analysis of Electromyography Signal Processing","score":0.9908,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/tactile-sensor","display_name":"Tactile sensor","score":0.6105825},{"id":"https://openalex.org/keywords/tactile-perception","display_name":"Tactile Perception","score":0.552432},{"id":"https://openalex.org/keywords/human-robot-collaboration","display_name":"Human-Robot Collaboration","score":0.542559},{"id":"https://openalex.org/keywords/sensory-feedback","display_name":"Sensory Feedback","score":0.538245},{"id":"https://openalex.org/keywords/object-pose-estimation","display_name":"Object Pose Estimation","score":0.526107},{"id":"https://openalex.org/keywords/contact-force","display_name":"Contact force","score":0.45820808}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67982936},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.63524276},{"id":"https://openalex.org/C39920418","wikidata":"https://www.wikidata.org/wiki/Q11476","display_name":"Kinematics","level":2,"score":0.6135871},{"id":"https://openalex.org/C46722567","wikidata":"https://www.wikidata.org/wiki/Q7674139","display_name":"Tactile sensor","level":3,"score":0.6105825},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6019158},{"id":"https://openalex.org/C13662910","wikidata":"https://www.wikidata.org/wiki/Q193139","display_name":"Trajectory","level":2,"score":0.58661026},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.57047063},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.5624037},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5373468},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.5228151},{"id":"https://openalex.org/C34413123","wikidata":"https://www.wikidata.org/wiki/Q170978","display_name":"Robotics","level":3,"score":0.5090227},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.5080428},{"id":"https://openalex.org/C81302111","wikidata":"https://www.wikidata.org/wiki/Q2916417","display_name":"Contact force","level":2,"score":0.45820808},{"id":"https://openalex.org/C144171764","wikidata":"https://www.wikidata.org/wiki/Q48103","display_name":"Torque","level":2,"score":0.41068265},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C74650414","wikidata":"https://www.wikidata.org/wiki/Q11397","display_name":"Classical mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra.2019.8794048","pdf_url":null,"source":{"id":"https://openalex.org/S4363607759","display_name":"2022 International Conference on Robotics and Automation (ICRA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1903.03699","pdf_url":"https://arxiv.org/pdf/1903.03699","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1903.03699","pdf_url":"https://arxiv.org/pdf/1903.03699","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1968315983","https://openalex.org/W1973600975","https://openalex.org/W1973903076","https://openalex.org/W2024908906","https://openalex.org/W2050708324","https://openalex.org/W2064169939","https://openalex.org/W2099951169","https://openalex.org/W2102393714","https://openalex.org/W2119104235","https://openalex.org/W2148820580","https://openalex.org/W2182229738","https://openalex.org/W2219612172","https://openalex.org/W2295692686","https://openalex.org/W2557928321","https://openalex.org/W2735970035","https://openalex.org/W2887302987","https://openalex.org/W2962705470","https://openalex.org/W2963030226","https://openalex.org/W2964067046","https://openalex.org/W2964292071","https://openalex.org/W2967463212","https://openalex.org/W3102334304","https://openalex.org/W4297887874"],"related_works":["https://openalex.org/W4289656195","https://openalex.org/W3163427917","https://openalex.org/W3128324021","https://openalex.org/W2709287450","https://openalex.org/W2157702526","https://openalex.org/W2124146082","https://openalex.org/W2121836998","https://openalex.org/W2040114039","https://openalex.org/W2027665490","https://openalex.org/W1960616769"],"abstract_inverted_index":{"To":[0],"perform":[1,142],"complex":[2],"tasks,":[3],"robots":[4],"must":[5],"be":[6],"able":[7],"to":[8,65,104,114,195],"interact":[9],"with":[10,85,145,174],"and":[11,38,76,91,111,123,138,148,158,180,192],"manipulate":[12],"their":[13],"surroundings.":[14],"One":[15],"of":[16,47,57,119],"the":[17,31,36,39,45,48,55,73,77,109,117,120,124,127],"key":[18],"challenges":[19],"in":[20,68,126,135,168],"accomplishing":[21],"this":[22,52],"is":[23,152],"robust":[24],"state":[25,32,46,66,79,198],"estimation":[26,67],"during":[27],"physical":[28],"interactions,":[29],"where":[30],"involves":[33],"not":[34],"only":[35],"robot":[37],"object":[40],"being":[41],"manipulated,":[42],"but":[43],"also":[44,172],"contact":[49,78],"itself.":[50],"In":[51],"work,":[53],"within":[54],"context":[56],"planar":[58],"pushing,":[59],"we":[60],"extend":[61],"previous":[62],"inference-based":[63],"approaches":[64],"several":[69,143],"ways.":[70],"We":[71,101,141,171],"estimate":[72,116],"robot,":[74],"object,":[75],"on":[80,132,177],"multiple":[81,178],"manipulation":[82],"platforms":[83],"configured":[84],"a":[86,93,98],"vision-based":[87],"articulated":[88],"model":[89],"tracker,":[90],"either":[92],"biomimetic":[94],"tactile":[95,112,169],"sensor":[96,190],"or":[97,165],"force-torque":[99],"sensor.":[100],"show":[102,149],"how":[103,150],"fuse":[105],"raw":[106],"measurements":[107],"from":[108],"tracker":[110],"sensors":[113],"jointly":[115],"trajectory":[118],"kinematic":[121],"states":[122],"forces":[125],"system":[128],"via":[129],"probabilistic":[130],"inference":[131],"factor":[133],"graphs,":[134],"both":[136],"batch":[137],"incremental":[139],"settings.":[140],"benchmarks":[144],"our":[146,183],"framework":[147],"performance":[151],"affected":[153],"by":[154],"incorporating":[155],"various":[156],"geometric":[157],"physics":[159],"based":[160],"constraints,":[161],"occluding":[162],"vision":[163],"sensors,":[164],"injecting":[166],"noise":[167],"sensors.":[170],"compare":[173],"prior":[175],"work":[176],"datasets":[179],"demonstrate":[181],"that":[182],"approach":[184],"can":[185],"effectively":[186],"optimize":[187],"over":[188],"multi-modal":[189],"data":[191],"reduce":[193],"uncertainty":[194],"find":[196],"better":[197],"estimates.":[199]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2967578475","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":7},{"year":2020,"cited_by_count":9},{"year":2019,"cited_by_count":1}],"updated_date":"2024-11-28T03:31:20.645075","created_date":"2019-08-22"}