{"id":"https://openalex.org/W2967657713","doi":"https://doi.org/10.1109/icra.2019.8793500","title":"Uncertainty-Aware Occupancy Map Prediction Using Generative Networks for Robot Navigation","display_name":"Uncertainty-Aware Occupancy Map Prediction Using Generative Networks for Robot Navigation","publication_year":2019,"publication_date":"2019-05-01","ids":{"openalex":"https://openalex.org/W2967657713","doi":"https://doi.org/10.1109/icra.2019.8793500","mag":"2967657713"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra.2019.8793500","pdf_url":null,"source":{"id":"https://openalex.org/S4363607759","display_name":"2022 International Conference on Robotics and Automation (ICRA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5044895481","display_name":"Kapil D. Katyal","orcid":null},"institutions":[{"id":"https://openalex.org/I145311948","display_name":"Johns Hopkins University","ror":"https://ror.org/00za53h95","country_code":"US","type":"education","lineage":["https://openalex.org/I145311948"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kapil Katyal","raw_affiliation_strings":["Dept. of Comp. Sci., Johns Hopkins University, Baltimore, MD, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Comp. Sci., Johns Hopkins University, Baltimore, MD, USA","institution_ids":["https://openalex.org/I145311948"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040555186","display_name":"Katie M. Popek","orcid":"https://orcid.org/0000-0003-2453-5328"},"institutions":[{"id":"https://openalex.org/I2802946424","display_name":"Johns Hopkins University Applied Physics Laboratory","ror":"https://ror.org/029pp9z10","country_code":"US","type":"facility","lineage":["https://openalex.org/I145311948","https://openalex.org/I2802946424"]},{"id":"https://openalex.org/I145311948","display_name":"Johns Hopkins University","ror":"https://ror.org/00za53h95","country_code":"US","type":"education","lineage":["https://openalex.org/I145311948"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Katie Popek","raw_affiliation_strings":["Johns Hopkins University Applied Physics Lab, Laurel, MD, USA"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University Applied Physics Lab, Laurel, MD, USA","institution_ids":["https://openalex.org/I2802946424","https://openalex.org/I145311948"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044926286","display_name":"Chris Paxton","orcid":null},"institutions":[{"id":"https://openalex.org/I4210127875","display_name":"Nvidia (United States)","ror":"https://ror.org/03jdj4y14","country_code":"US","type":"company","lineage":["https://openalex.org/I4210127875"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chris Paxton","raw_affiliation_strings":["NVIDIA, Seattle, WA, USA"],"affiliations":[{"raw_affiliation_string":"NVIDIA, Seattle, WA, USA","institution_ids":["https://openalex.org/I4210127875"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112390681","display_name":"Phil Burlina","orcid":null},"institutions":[{"id":"https://openalex.org/I145311948","display_name":"Johns Hopkins University","ror":"https://ror.org/00za53h95","country_code":"US","type":"education","lineage":["https://openalex.org/I145311948"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Phil Burlina","raw_affiliation_strings":["Dept. of Comp. Sci., Johns Hopkins University, Baltimore, MD, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Comp. Sci., Johns Hopkins University, Baltimore, MD, USA","institution_ids":["https://openalex.org/I145311948"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5041383246","display_name":"Gregory D. Hager","orcid":"https://orcid.org/0000-0002-6662-9763"},"institutions":[{"id":"https://openalex.org/I145311948","display_name":"Johns Hopkins University","ror":"https://ror.org/00za53h95","country_code":"US","type":"education","lineage":["https://openalex.org/I145311948"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Gregory D. Hager","raw_affiliation_strings":["Dept. of Comp. Sci., Johns Hopkins University, Baltimore, MD, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Comp. Sci., Johns Hopkins University, Baltimore, MD, USA","institution_ids":["https://openalex.org/I145311948"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.92,"has_fulltext":false,"cited_by_count":41,"citation_normalized_percentile":{"value":0.999908,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":"5453","last_page":"5459"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/occupancy","display_name":"Occupancy","score":0.49393326}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72769624},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.66335124},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.64965373},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.59889305},{"id":"https://openalex.org/C2780522230","wikidata":"https://www.wikidata.org/wiki/Q1140419","display_name":"Ambiguity","level":2,"score":0.56781656},{"id":"https://openalex.org/C160331591","wikidata":"https://www.wikidata.org/wiki/Q7075743","display_name":"Occupancy","level":2,"score":0.49393326},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.48533502},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.468755},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4485322},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43920302},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.36006397},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12492633},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.093643636},{"id":"https://openalex.org/C170154142","wikidata":"https://www.wikidata.org/wiki/Q150737","display_name":"Architectural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra.2019.8793500","pdf_url":null,"source":{"id":"https://openalex.org/S4363607759","display_name":"2022 International Conference on Robotics and Automation (ICRA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1901129140","https://openalex.org/W1977189000","https://openalex.org/W2018583892","https://openalex.org/W2031832209","https://openalex.org/W2067858689","https://openalex.org/W2099471712","https://openalex.org/W2107667896","https://openalex.org/W2110854100","https://openalex.org/W2118688707","https://openalex.org/W2118890998","https://openalex.org/W2133059825","https://openalex.org/W2295936755","https://openalex.org/W2411093439","https://openalex.org/W2479644247","https://openalex.org/W2528489519","https://openalex.org/W2557519264","https://openalex.org/W2564666437","https://openalex.org/W2737993726","https://openalex.org/W2892266804","https://openalex.org/W2899771611","https://openalex.org/W2962736495","https://openalex.org/W2962841471","https://openalex.org/W2963073614","https://openalex.org/W2963428623","https://openalex.org/W2963544079","https://openalex.org/W2964013315","https://openalex.org/W2964077562","https://openalex.org/W3021208093","https://openalex.org/W3210232381","https://openalex.org/W4243599615","https://openalex.org/W4320013936"],"related_works":["https://openalex.org/W4282043467","https://openalex.org/W3177545769","https://openalex.org/W3093197249","https://openalex.org/W3023979140","https://openalex.org/W2904068067","https://openalex.org/W2411867243","https://openalex.org/W2105697914","https://openalex.org/W1968324288","https://openalex.org/W1565491139","https://openalex.org/W1540010871"],"abstract_inverted_index":{"Efficient":[0],"exploration":[1,119,133],"through":[2],"unknown":[3,135],"environments":[4],"remains":[5],"a":[6,77,113],"challenging":[7],"problem":[8],"for":[9,59,67,101,131],"robotic":[10],"systems.":[11],"In":[12],"these":[13],"situations,":[14],"the":[15,122,125,129],"robot's":[16],"ability":[17],"to":[18,82,94,99],"reason":[19],"about":[20],"its":[21],"future":[22,68],"motion":[23],"is":[24],"often":[25],"severely":[26],"limited":[27],"by":[28,41],"sensor":[29,65],"field":[30],"of":[31,64,124,134],"view":[32],"(FOV).":[33],"By":[34],"contrast,":[35],"biological":[36],"systems":[37],"routinely":[38],"make":[39,83],"decisions":[40],"taking":[42],"into":[43],"consideration":[44],"what":[45],"might":[46],"exist":[47],"beyond":[48],"their":[49],"FOV":[50],"based":[51],"on":[52],"prior":[53],"experience.":[54],"We":[55,75,90],"present":[56],"an":[57],"approach":[58],"predicting":[60],"occupancy":[61],"map":[62,115],"representations":[63],"data":[66],"robot":[69],"motions":[70],"using":[71,121],"deep":[72],"neural":[73,96],"networks.":[74],"develop":[76],"custom":[78],"loss":[79],"function":[80],"used":[81],"accurate":[84],"prediction":[85,116],"while":[86],"emphasizing":[87],"physical":[88],"boundaries.":[89],"further":[91],"study":[92],"extensions":[93],"our":[95],"network":[97],"architecture":[98],"account":[100],"uncertainty":[102],"and":[103,108,117],"ambiguity":[104],"inherent":[105],"in":[106],"mapping":[107],"exploration.":[109],"Finally,":[110],"we":[111],"demonstrate":[112],"combined":[114],"information-theoretic":[118],"strategy":[120],"variance":[123],"generated":[126],"hypotheses":[127],"as":[128],"heuristic":[130],"efficient":[132],"environments.":[136]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2967657713","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":9},{"year":2020,"cited_by_count":12},{"year":2019,"cited_by_count":2}],"updated_date":"2025-01-03T11:34:11.018661","created_date":"2019-08-22"}