{"id":"https://openalex.org/W2739423245","doi":"https://doi.org/10.1109/icra.2017.7989203","title":"Probabilistic data association for semantic SLAM","display_name":"Probabilistic data association for semantic SLAM","publication_year":2017,"publication_date":"2017-05-01","ids":{"openalex":"https://openalex.org/W2739423245","doi":"https://doi.org/10.1109/icra.2017.7989203","mag":"2739423245"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra.2017.7989203","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5036169536","display_name":"Sean L. Bowman","orcid":"https://orcid.org/0000-0002-7711-2321"},"institutions":[{"id":"https://openalex.org/I79576946","display_name":"University of Pennsylvania","ror":"https://ror.org/00b30xv10","country_code":"US","type":"education","lineage":["https://openalex.org/I79576946"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sean L. Bowman","raw_affiliation_strings":["GRASP Lab, University of Pennsylvania, Philadelphia, PA, USA"],"affiliations":[{"raw_affiliation_string":"GRASP Lab, University of Pennsylvania, Philadelphia, PA, USA","institution_ids":["https://openalex.org/I79576946"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066400889","display_name":"Nikolay Atanasov","orcid":"https://orcid.org/0000-0003-0272-7580"},"institutions":[{"id":"https://openalex.org/I79576946","display_name":"University of Pennsylvania","ror":"https://ror.org/00b30xv10","country_code":"US","type":"education","lineage":["https://openalex.org/I79576946"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nikolay Atanasov","raw_affiliation_strings":["GRASP Lab, University of Pennsylvania, Philadelphia, PA, USA"],"affiliations":[{"raw_affiliation_string":"GRASP Lab, University of Pennsylvania, Philadelphia, PA, USA","institution_ids":["https://openalex.org/I79576946"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050660826","display_name":"Kostas Daniilidis","orcid":"https://orcid.org/0000-0003-0498-0758"},"institutions":[{"id":"https://openalex.org/I79576946","display_name":"University of Pennsylvania","ror":"https://ror.org/00b30xv10","country_code":"US","type":"education","lineage":["https://openalex.org/I79576946"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kostas Daniilidis","raw_affiliation_strings":["GRASP Lab, University of Pennsylvania, Philadelphia, PA, USA"],"affiliations":[{"raw_affiliation_string":"GRASP Lab, University of Pennsylvania, Philadelphia, PA, USA","institution_ids":["https://openalex.org/I79576946"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5029243115","display_name":"George J. Pappas","orcid":"https://orcid.org/0000-0001-9081-0637"},"institutions":[{"id":"https://openalex.org/I79576946","display_name":"University of Pennsylvania","ror":"https://ror.org/00b30xv10","country_code":"US","type":"education","lineage":["https://openalex.org/I79576946"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"George J. Pappas","raw_affiliation_strings":["GRASP Lab, University of Pennsylvania, Philadelphia, PA, USA"],"affiliations":[{"raw_affiliation_string":"GRASP Lab, University of Pennsylvania, Philadelphia, PA, USA","institution_ids":["https://openalex.org/I79576946"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":77.044,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":451,"citation_normalized_percentile":{"value":0.999817,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":"1722","last_page":"1729"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10191","display_name":"Simultaneous Localization and Mapping","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10191","display_name":"Simultaneous Localization and Mapping","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10326","display_name":"Wireless Indoor Localization Techniques and Systems","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/landmark","display_name":"Landmark","score":0.86903954},{"id":"https://openalex.org/keywords/localization","display_name":"Localization","score":0.594542},{"id":"https://openalex.org/keywords/feature-matching","display_name":"Feature Matching","score":0.56622},{"id":"https://openalex.org/keywords/location-estimation","display_name":"Location Estimation","score":0.555983},{"id":"https://openalex.org/keywords/indoor-localization","display_name":"Indoor Localization","score":0.541966},{"id":"https://openalex.org/keywords/object-recognition","display_name":"Object Recognition","score":0.529377},{"id":"https://openalex.org/keywords/data-association","display_name":"Data association","score":0.52673006},{"id":"https://openalex.org/keywords/association","display_name":"Association (psychology)","score":0.4939497}],"concepts":[{"id":"https://openalex.org/C2780297707","wikidata":"https://www.wikidata.org/wiki/Q4895393","display_name":"Landmark","level":2,"score":0.86903954},{"id":"https://openalex.org/C86369673","wikidata":"https://www.wikidata.org/wiki/Q1203659","display_name":"Simultaneous localization and mapping","level":4,"score":0.7659204},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.6608571},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6548176},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62114084},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.58312917},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.5542676},{"id":"https://openalex.org/C2983325608","wikidata":"https://www.wikidata.org/wiki/Q17084606","display_name":"Data association","level":3,"score":0.52673006},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.5113008},{"id":"https://openalex.org/C142853389","wikidata":"https://www.wikidata.org/wiki/Q744778","display_name":"Association (psychology)","level":2,"score":0.4939497},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46825323},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.43913868},{"id":"https://openalex.org/C137836250","wikidata":"https://www.wikidata.org/wiki/Q984063","display_name":"Optimization problem","level":2,"score":0.43844375},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.42242622},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.40341905},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3818839},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35712993},{"id":"https://openalex.org/C19966478","wikidata":"https://www.wikidata.org/wiki/Q4810574","display_name":"Mobile robot","level":3,"score":0.24082986},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.16604623},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra.2017.7989203","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.63}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":48,"referenced_works":["https://openalex.org/W114421296","https://openalex.org/W1612997784","https://openalex.org/W1656165940","https://openalex.org/W1932624639","https://openalex.org/W1951265541","https://openalex.org/W1968315983","https://openalex.org/W1970504153","https://openalex.org/W1972671602","https://openalex.org/W1990987766","https://openalex.org/W2020762599","https://openalex.org/W2023668040","https://openalex.org/W2024676408","https://openalex.org/W2049207102","https://openalex.org/W2051349034","https://openalex.org/W2056610823","https://openalex.org/W2060772243","https://openalex.org/W2061669523","https://openalex.org/W2088287910","https://openalex.org/W2097696373","https://openalex.org/W2107402720","https://openalex.org/W2117228865","https://openalex.org/W2118223742","https://openalex.org/W2141461755","https://openalex.org/W2144409879","https://openalex.org/W2146881125","https://openalex.org/W2150066425","https://openalex.org/W2153054365","https://openalex.org/W2160921898","https://openalex.org/W2162731263","https://openalex.org/W2167687475","https://openalex.org/W2168356304","https://openalex.org/W2168676389","https://openalex.org/W2182229738","https://openalex.org/W2184393491","https://openalex.org/W2194775991","https://openalex.org/W2214788824","https://openalex.org/W2216550548","https://openalex.org/W2232251213","https://openalex.org/W2265661972","https://openalex.org/W2293098187","https://openalex.org/W2490270993","https://openalex.org/W2963288928","https://openalex.org/W3102327032","https://openalex.org/W3103648783","https://openalex.org/W41755662","https://openalex.org/W4246614213","https://openalex.org/W639708223","https://openalex.org/W801273237"],"related_works":["https://openalex.org/W4322716905","https://openalex.org/W2975125358","https://openalex.org/W2963091090","https://openalex.org/W2564786226","https://openalex.org/W2165326377","https://openalex.org/W2165113654","https://openalex.org/W2141498523","https://openalex.org/W2127578024","https://openalex.org/W1581933381","https://openalex.org/W1510326563"],"abstract_inverted_index":{"Traditional":[0],"approaches":[1],"to":[2,22,26,45],"simultaneous":[3],"localization":[4],"and":[5,17,43,63,100,130,140,143,156,160,171,177,197],"mapping":[6],"(SLAM)":[7],"rely":[8],"on":[9,37,195],"low-level":[10,38],"geometric":[11],"features":[12,39],"such":[13],"as":[14],"points,":[15],"lines,":[16],"planes.":[18],"They":[19],"are":[20,102],"unable":[21],"assign":[23],"semantic":[24,131,138],"labels":[25],"landmarks":[27],"observed":[28],"in":[29,47,66,181],"the":[30,53,87,165,175,184],"environment.":[31],"Furthermore,":[32],"loop":[33,78],"closure":[34],"recognition":[35,57,101],"based":[36],"is":[40,112,193],"often":[41],"viewpoint-dependent":[42],"subject":[44],"failure":[46],"ambiguous":[48],"or":[49],"repetitive":[50],"environments.":[51],"On":[52],"other":[54],"hand,":[55],"object":[56],"methods":[58],"can":[59],"infer":[60],"landmark":[61,132,157,170],"classes":[62],"scales,":[64],"resulting":[65],"a":[67,81,91,113,161],"small":[68],"set":[69],"of":[70,86,152,190],"easily":[71],"recognizable":[72],"landmarks,":[73],"ideal":[74],"for":[75],"view-independent":[76],"unambiguous":[77],"closure.":[79],"In":[80,119],"map":[82],"with":[83],"several":[84],"objects":[85],"same":[88],"class,":[89],"however,":[90],"crucial":[92],"data":[93,98,141,154],"association":[94,99,155,176],"problem":[95,126],"exists.":[96],"While":[97],"discrete":[103,108,153],"problems":[104],"usually":[105],"solved":[106],"using":[107],"inference,":[109],"classical":[110],"SLAM":[111],"continuous":[114,162],"optimization":[115,125,163],"over":[116,127,164],"metric":[117,136,166],"information.":[118],"this":[120],"paper,":[121],"we":[122],"formulate":[123],"an":[124,150],"sensor":[128],"states":[129],"positions":[133],"that":[134],"integrates":[135],"information,":[137,139],"associations,":[142],"decompose":[144],"it":[145],"into":[146],"two":[147],"interconnected":[148],"problems:":[149],"estimation":[151],"class":[158,178],"probabilities,":[159],"states.":[167],"The":[168,188],"estimated":[169],"robot":[172],"poses":[173],"affect":[174,183],"distributions,":[179],"which":[180],"turn":[182],"robot-landmark":[185],"pose":[186],"optimization.":[187],"performance":[189],"our":[191],"algorithm":[192],"demonstrated":[194],"indoor":[196],"outdoor":[198],"datasets.":[199]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2739423245","counts_by_year":[{"year":2024,"cited_by_count":21},{"year":2023,"cited_by_count":59},{"year":2022,"cited_by_count":58},{"year":2021,"cited_by_count":82},{"year":2020,"cited_by_count":89},{"year":2019,"cited_by_count":78},{"year":2018,"cited_by_count":55},{"year":2017,"cited_by_count":6}],"updated_date":"2024-12-03T11:15:44.693120","created_date":"2017-07-31"}