{"id":"https://openalex.org/W4312576172","doi":"https://doi.org/10.1109/icpr56361.2022.9956484","title":"Multi-View Graph Autoencoder for Unsupervised Graph Representation Learning","display_name":"Multi-View Graph Autoencoder for Unsupervised Graph Representation Learning","publication_year":2022,"publication_date":"2022-08-21","ids":{"openalex":"https://openalex.org/W4312576172","doi":"https://doi.org/10.1109/icpr56361.2022.9956484"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr56361.2022.9956484","pdf_url":null,"source":{"id":"https://openalex.org/S4363607731","display_name":"2022 26th International Conference on Pattern Recognition (ICPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5017558697","display_name":"Jingci Li","orcid":null},"institutions":[{"id":"https://openalex.org/I29739308","display_name":"Guangxi Normal University","ror":"https://ror.org/02frt9q65","country_code":"CN","type":"funder","lineage":["https://openalex.org/I29739308"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jingci Li","raw_affiliation_strings":["Guangxi Normal University,Guangxi Key Lab of Multi-Source Information Mining & Security,Guilin,China,541004"],"affiliations":[{"raw_affiliation_string":"Guangxi Normal University,Guangxi Key Lab of Multi-Source Information Mining & Security,Guilin,China,541004","institution_ids":["https://openalex.org/I29739308"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061609422","display_name":"Guangquan Lu","orcid":"https://orcid.org/0000-0001-6908-6269"},"institutions":[{"id":"https://openalex.org/I29739308","display_name":"Guangxi Normal University","ror":"https://ror.org/02frt9q65","country_code":"CN","type":"funder","lineage":["https://openalex.org/I29739308"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guangquan Lu","raw_affiliation_strings":["Guangxi Normal University,Guangxi Key Lab of Multi-Source Information Mining & Security,Guilin,China,541004"],"affiliations":[{"raw_affiliation_string":"Guangxi Normal University,Guangxi Key Lab of Multi-Source Information Mining & Security,Guilin,China,541004","institution_ids":["https://openalex.org/I29739308"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5020974323","display_name":"Zhengtian Wu","orcid":"https://orcid.org/0000-0001-7702-5730"},"institutions":[{"id":"https://openalex.org/I308837","display_name":"Suzhou University of Science and Technology","ror":"https://ror.org/04en8wb91","country_code":"CN","type":"funder","lineage":["https://openalex.org/I308837"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhengtian Wu","raw_affiliation_strings":["Suzhou University of Science and Technology,Electronic and Information Engineering,Suzhou,China,215009"],"affiliations":[{"raw_affiliation_string":"Suzhou University of Science and Technology,Electronic and Information Engineering,Suzhou,China,215009","institution_ids":["https://openalex.org/I308837"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.434,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.551605,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"2213","last_page":"2218"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9754,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10269","display_name":"Epigenetics and DNA Methylation","score":0.9677,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.8417804},{"id":"https://openalex.org/keywords/adjacency-matrix","display_name":"Adjacency matrix","score":0.7041411},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.6884674},{"id":"https://openalex.org/keywords/graph-embedding","display_name":"Graph Embedding","score":0.5369432},{"id":"https://openalex.org/keywords/graph-energy","display_name":"Graph energy","score":0.5213886},{"id":"https://openalex.org/keywords/topological-graph-theory","display_name":"Topological graph theory","score":0.45891106}],"concepts":[{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.8417804},{"id":"https://openalex.org/C180356752","wikidata":"https://www.wikidata.org/wiki/Q727035","display_name":"Adjacency matrix","level":3,"score":0.7041411},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.6884674},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.61281663},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5637085},{"id":"https://openalex.org/C75564084","wikidata":"https://www.wikidata.org/wiki/Q5597085","display_name":"Graph embedding","level":3,"score":0.5369432},{"id":"https://openalex.org/C78913703","wikidata":"https://www.wikidata.org/wiki/Q5597087","display_name":"Graph energy","level":5,"score":0.5213886},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.5089326},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46456093},{"id":"https://openalex.org/C157406716","wikidata":"https://www.wikidata.org/wiki/Q4115842","display_name":"Topological graph theory","level":5,"score":0.45891106},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.43156126},{"id":"https://openalex.org/C184720557","wikidata":"https://www.wikidata.org/wiki/Q7825049","display_name":"Topology (electrical circuits)","level":2,"score":0.38042015},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.36446142},{"id":"https://openalex.org/C22149727","wikidata":"https://www.wikidata.org/wiki/Q7940747","display_name":"Voltage graph","level":4,"score":0.3477307},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.32104787},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21649727},{"id":"https://openalex.org/C203776342","wikidata":"https://www.wikidata.org/wiki/Q1378376","display_name":"Line graph","level":3,"score":0.16416809},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.120958835}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr56361.2022.9956484","pdf_url":null,"source":{"id":"https://openalex.org/S4363607731","display_name":"2022 26th International Conference on Pattern Recognition (ICPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1533861849","https://openalex.org/W1854214752","https://openalex.org/W2168627253","https://openalex.org/W2767404761","https://openalex.org/W2785662987","https://openalex.org/W2788284887","https://openalex.org/W2916106175","https://openalex.org/W2921065608","https://openalex.org/W2953384591","https://openalex.org/W2962876161","https://openalex.org/W2964015378","https://openalex.org/W2964051675","https://openalex.org/W2964321699","https://openalex.org/W2969541706","https://openalex.org/W2981450816","https://openalex.org/W2984343629","https://openalex.org/W2990045899","https://openalex.org/W2998176787","https://openalex.org/W3000137351","https://openalex.org/W3007404067","https://openalex.org/W3012918605","https://openalex.org/W3034693603","https://openalex.org/W3034795332","https://openalex.org/W3052570231","https://openalex.org/W3100993589","https://openalex.org/W3104097132","https://openalex.org/W3114928288","https://openalex.org/W3120546985","https://openalex.org/W3199950635","https://openalex.org/W4210257598","https://openalex.org/W4285723986","https://openalex.org/W4288095686","https://openalex.org/W4288335984","https://openalex.org/W4298289240","https://openalex.org/W4322614756"],"related_works":["https://openalex.org/W4372284312","https://openalex.org/W4319994858","https://openalex.org/W4295974787","https://openalex.org/W3209493708","https://openalex.org/W3119082574","https://openalex.org/W3036916354","https://openalex.org/W2938670946","https://openalex.org/W2800334336","https://openalex.org/W2608378520","https://openalex.org/W2497161677"],"abstract_inverted_index":{"Unsupervised":[0],"graph":[1,6,9,32,38,82,100],"representation":[2],"learning":[3],"based":[4],"on":[5,113],"autoencoder":[7,11,83],"and":[8,25,37,45,61,94,97,102,116],"variational":[10],"has":[12],"achieved":[13],"significant":[14],"success":[15],"in":[16],"non-Euclidean":[17],"data":[18],"such":[19],"as":[20],"citation":[21],"networks,":[22,24],"social":[23],"so":[26],"on.":[27],"However,":[28],"the":[29,48,69,73,99,108,117,121],"most":[30],"existing":[31],"autoencoders":[33],"aggregate":[34,86],"node":[35,49,103],"features":[36,104],"structure":[39,101],"from":[40,89],"one":[41],"view:":[42],"local":[43,90],"topology,":[44,91],"only":[46],"reconstruct":[47,98],"feature":[50,95],"matrix":[51],"or":[52],"adjacency":[53],"matrix,":[54],"which":[55,84],"neither":[56],"learns":[57],"a":[58,80],"more":[59],"useful":[60],"comprehensive":[62],"embedding":[63],"nor":[64],"makes":[65],"full":[66],"use":[67],"of":[68,72,110,124],"latent":[70,87],"information":[71,88],"embedding.":[74],"In":[75],"this":[76],"paper,":[77],"we":[78],"propose":[79],"multi-view":[81],"can":[85],"global":[92],"topology":[93],"similarity":[96],"simultaneously.":[105],"We":[106],"validate":[107],"effectiveness":[109],"our":[111,125],"framework":[112,127],"four":[114],"datasets":[115],"experimental":[118],"results":[119],"demonstrate":[120],"superior":[122],"performance":[123],"proposed":[126],"compared":[128],"with":[129],"other":[130],"advanced":[131],"frameworks.":[132]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312576172","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-28T18:13:45.645986","created_date":"2023-01-05"}