{"id":"https://openalex.org/W4312313074","doi":"https://doi.org/10.1109/icpr56361.2022.9956268","title":"Dual-Path Geometry-Aware Network for Semantic Segmentation of High-Resolution Aerial Images","display_name":"Dual-Path Geometry-Aware Network for Semantic Segmentation of High-Resolution Aerial Images","publication_year":2022,"publication_date":"2022-08-21","ids":{"openalex":"https://openalex.org/W4312313074","doi":"https://doi.org/10.1109/icpr56361.2022.9956268"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr56361.2022.9956268","pdf_url":null,"source":{"id":"https://openalex.org/S4363607731","display_name":"2022 26th International Conference on Pattern Recognition (ICPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5068748407","display_name":"Zhenglin Xian","orcid":null},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhenglin Xian","raw_affiliation_strings":["Beijing University of Posts and Telecommunications"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100426809","display_name":"Jiaying Wang","orcid":"https://orcid.org/0000-0002-1509-0075"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiaying Wang","raw_affiliation_strings":["Beijing University of Posts and Telecommunications"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101644168","display_name":"Junli Yang","orcid":"https://orcid.org/0000-0001-8370-7105"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junli Yang","raw_affiliation_strings":["Beijing University of Posts and Telecommunications"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101933045","display_name":"Bin Wang","orcid":"https://orcid.org/0000-0002-4717-2622"},"institutions":[{"id":"https://openalex.org/I180662265","display_name":"China Mobile (China)","ror":"https://ror.org/05gftfe97","country_code":"CN","type":"company","lineage":["https://openalex.org/I180662265"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bin Wang","raw_affiliation_strings":["China Mobile Research Institute"],"affiliations":[{"raw_affiliation_string":"China Mobile Research Institute","institution_ids":["https://openalex.org/I180662265"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043067884","display_name":"Zideng Feng","orcid":null},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zideng Feng","raw_affiliation_strings":["Beijing University of Posts and Telecommunications"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100642051","display_name":"Yifei Huang","orcid":"https://orcid.org/0000-0002-3077-0175"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yifei Huang","raw_affiliation_strings":["Beijing University of Posts and Telecommunications"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications","institution_ids":["https://openalex.org/I139759216"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":"414","last_page":"420"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/aerial-image","display_name":"Aerial image","score":0.4786114},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.439815}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7662275},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7289667},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6209725},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.52068174},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5055475},{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.48013875},{"id":"https://openalex.org/C2776429412","wikidata":"https://www.wikidata.org/wiki/Q4688011","display_name":"Aerial image","level":3,"score":0.4786114},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.439815},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.43829536},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38347083},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.1411579},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr56361.2022.9956268","pdf_url":null,"source":{"id":"https://openalex.org/S4363607731","display_name":"2022 26th International Conference on Pattern Recognition (ICPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320334111","funder_display_name":"Innovation Fund","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1901129140","https://openalex.org/W1903029394","https://openalex.org/W2316981074","https://openalex.org/W2412782625","https://openalex.org/W2469938794","https://openalex.org/W2778539913","https://openalex.org/W2924464923","https://openalex.org/W2928165649","https://openalex.org/W2955058313","https://openalex.org/W2963840672","https://openalex.org/W2964309882","https://openalex.org/W2964444661","https://openalex.org/W3009297390","https://openalex.org/W3094502228","https://openalex.org/W3137572916","https://openalex.org/W3138516171","https://openalex.org/W3161825146","https://openalex.org/W3190334976","https://openalex.org/W3198314649","https://openalex.org/W3211490618","https://openalex.org/W4214893857","https://openalex.org/W4300524495","https://openalex.org/W4313007769"],"related_works":["https://openalex.org/W4379231730","https://openalex.org/W2901309398","https://openalex.org/W2127305659","https://openalex.org/W2064075093","https://openalex.org/W2054964223","https://openalex.org/W2050609384","https://openalex.org/W2034727732","https://openalex.org/W1992574978","https://openalex.org/W1989735375","https://openalex.org/W1522196789"],"abstract_inverted_index":{"Semantic":[0],"segmentation":[1,38,94,201],"of":[2,40,50,60,67,86,92,111,149,171,178],"high-resolution":[3,21,41],"aerial":[4,22,42],"images":[5,43,53],"is":[6,72,125,156],"a":[7,73,103,209],"fundamental":[8],"research":[9],"topic":[10],"for":[11,168,188],"its":[12],"extensive":[13],"applications.":[14],"Different":[15],"from":[16,133,164,194],"natural":[17],"scene":[18],"datasets,":[19],"the":[20,35,47,51,64,77,81,89,98,140,145,160,204],"datasets":[23],"provide":[24],"additional":[25],"elevation":[26],"data":[27,71],"such":[28],"as":[29],"Digital":[30,113],"Surface":[31,114],"Model":[32,115],"(DSM).":[33],"However,":[34],"current":[36],"semantic":[37],"methods":[39],"focus":[44],"on":[45,203],"improving":[46],"feature":[48,65,172,192],"extraction":[49],"spectral":[52,165],"but":[54],"fail":[55],"to":[56,127,158,213],"make":[57],"full":[58,169],"use":[59],"DSM":[61,134],"images.":[62,135,166],"Besides,":[63],"fusion":[66,193],"these":[68,179],"two":[69,180],"disparate":[70],"challenging":[74],"problem.":[75],"Moreover,":[76],"tremendous":[78],"details":[79],"and":[80,118,190,197],"considerable":[82],"variations":[83],"in":[84,139],"scale":[85],"objects":[87],"limit":[88],"representation":[90,147],"capacity":[91],"existing":[93],"networks.":[95],"To":[96],"address":[97],"above":[99],"problems,":[100],"we":[101,182],"propose":[102],"new":[104],"dual-path":[105],"geometry-aware":[106],"end-to-end":[107],"DPGANet":[108],"which":[109],"consists":[110],"Multi-scale":[112],"Awareness(MDSMA)":[116],"path":[117,124,142,155],"Swin":[119,153],"Transformer":[120,154],"path.":[121],"The":[122,136,152,200],"MDSMA":[123,141],"designed":[126,157],"extract":[128,159],"multi-stage":[129,161],"3D":[130],"geometry":[131],"features":[132],"Res2Net":[137],"modules":[138],"can":[143],"enhance":[144],"multi-scale":[146],"capability":[148],"our":[150],"network.":[151],"long-range":[162],"dependencies":[163],"Furthermore,":[167],"usage":[170],"maps":[173],"produced":[174],"by":[175],"corresponding":[176],"stages":[177],"paths,":[181],"design":[183],"an":[184],"Attention":[185],"Fusion":[186],"Module(AFM)":[187],"memory-saving":[189],"computation-effective":[191],"both":[195],"spatial":[196],"channel":[198],"dimensions.":[199],"results":[202],"ISPRS":[205],"Potsdam":[206],"dataset":[207],"achieve":[208],"competitive":[210],"performance":[211],"compared":[212],"other":[214],"state-of-the-art":[215],"methods.":[216]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312313074","counts_by_year":[],"updated_date":"2024-12-15T11:23:35.170827","created_date":"2023-01-04"}