{"id":"https://openalex.org/W2902510006","doi":"https://doi.org/10.1109/icpr.2018.8546033","title":"Multi-Gradient Directional Features for Gender Identification","display_name":"Multi-Gradient Directional Features for Gender Identification","publication_year":2018,"publication_date":"2018-08-01","ids":{"openalex":"https://openalex.org/W2902510006","doi":"https://doi.org/10.1109/icpr.2018.8546033","mag":"2902510006"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2018.8546033","pdf_url":null,"source":{"id":"https://openalex.org/S4363607731","display_name":"2022 26th International Conference on Pattern Recognition (ICPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5008920000","display_name":"B.J. Navya","orcid":null},"institutions":[{"id":"https://openalex.org/I204743663","display_name":"University of Mysore","ror":"https://ror.org/012bxv356","country_code":"IN","type":"education","lineage":["https://openalex.org/I204743663"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"B.J. Navya","raw_affiliation_strings":["Department of Studies in Computer Science, University of Mysore, Karnataka, India"],"affiliations":[{"raw_affiliation_string":"Department of Studies in Computer Science, University of Mysore, Karnataka, India","institution_ids":["https://openalex.org/I204743663"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055656645","display_name":"G. C. Swetha","orcid":null},"institutions":[{"id":"https://openalex.org/I204743663","display_name":"University of Mysore","ror":"https://ror.org/012bxv356","country_code":"IN","type":"education","lineage":["https://openalex.org/I204743663"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"G. C. Swetha","raw_affiliation_strings":["Department of Studies in Computer Science, University of Mysore, Karnataka, India"],"affiliations":[{"raw_affiliation_string":"Department of Studies in Computer Science, University of Mysore, Karnataka, India","institution_ids":["https://openalex.org/I204743663"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025871978","display_name":"Palaiahnakote Shivakumara","orcid":"https://orcid.org/0000-0001-9026-4613"},"institutions":[{"id":"https://openalex.org/I33849332","display_name":"University of Malaya","ror":"https://ror.org/00rzspn62","country_code":"MY","type":"education","lineage":["https://openalex.org/I33849332"]}],"countries":["MY"],"is_corresponding":false,"raw_author_name":"Palaiahnakote Shivakumara","raw_affiliation_strings":["Faculty of Computer System and Information Technology, University of Malaya, Kuala Lumpur, Malaysia"],"affiliations":[{"raw_affiliation_string":"Faculty of Computer System and Information Technology, University of Malaya, Kuala Lumpur, Malaysia","institution_ids":["https://openalex.org/I33849332"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102409637","display_name":"Sangheeta Roy","orcid":null},"institutions":[{"id":"https://openalex.org/I33849332","display_name":"University of Malaya","ror":"https://ror.org/00rzspn62","country_code":"MY","type":"education","lineage":["https://openalex.org/I33849332"]}],"countries":["MY"],"is_corresponding":false,"raw_author_name":"Sangheeta Roy","raw_affiliation_strings":["Faculty of Computer System and Information Technology, University of Malaya, Kuala Lumpur, Malaysia"],"affiliations":[{"raw_affiliation_string":"Faculty of Computer System and Information Technology, University of Malaya, Kuala Lumpur, Malaysia","institution_ids":["https://openalex.org/I33849332"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076766601","display_name":"D. S. Guru","orcid":null},"institutions":[{"id":"https://openalex.org/I204743663","display_name":"University of Mysore","ror":"https://ror.org/012bxv356","country_code":"IN","type":"education","lineage":["https://openalex.org/I204743663"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"D. S. Guru","raw_affiliation_strings":["Department of Studies in Computer Science, University of Mysore, Karnataka, India"],"affiliations":[{"raw_affiliation_string":"Department of Studies in Computer Science, University of Mysore, Karnataka, India","institution_ids":["https://openalex.org/I204743663"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068803496","display_name":"Umapada Pal","orcid":"https://orcid.org/0000-0002-5426-2618"},"institutions":[{"id":"https://openalex.org/I6498739","display_name":"Indian Statistical Institute","ror":"https://ror.org/00q2w1j53","country_code":"IN","type":"education","lineage":["https://openalex.org/I6498739"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Umapada Pal","raw_affiliation_strings":["Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, Kolkata, India"],"affiliations":[{"raw_affiliation_string":"Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, Kolkata, India","institution_ids":["https://openalex.org/I6498739"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5061696740","display_name":"Tong L\u00fc","orcid":"https://orcid.org/0000-0002-7051-5347"},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"education","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tong Lu","raw_affiliation_strings":["National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China","institution_ids":["https://openalex.org/I881766915"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.213,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":11,"citation_normalized_percentile":{"value":0.871491,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10828","display_name":"Biometric Identification and Security","score":0.9682,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":0.9498,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/vector-flow","display_name":"Vector flow","score":0.5463425},{"id":"https://openalex.org/keywords/image-gradient","display_name":"Image gradient","score":0.5410167},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.53243655},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.5016837},{"id":"https://openalex.org/keywords/line","display_name":"Line (geometry)","score":0.4796077},{"id":"https://openalex.org/keywords/handwriting","display_name":"Handwriting","score":0.44530034},{"id":"https://openalex.org/keywords/identification","display_name":"Identification","score":0.43900317}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6695988},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.6647869},{"id":"https://openalex.org/C53533937","wikidata":"https://www.wikidata.org/wiki/Q185020","display_name":"Histogram","level":3,"score":0.6389334},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6047532},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5629854},{"id":"https://openalex.org/C20749125","wikidata":"https://www.wikidata.org/wiki/Q7917826","display_name":"Vector flow","level":4,"score":0.5463425},{"id":"https://openalex.org/C182037307","wikidata":"https://www.wikidata.org/wiki/Q17039097","display_name":"Image gradient","level":5,"score":0.5410167},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.53243655},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.5016837},{"id":"https://openalex.org/C198352243","wikidata":"https://www.wikidata.org/wiki/Q37105","display_name":"Line (geometry)","level":2,"score":0.4796077},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.44996446},{"id":"https://openalex.org/C2779386606","wikidata":"https://www.wikidata.org/wiki/Q2393642","display_name":"Handwriting","level":2,"score":0.44530034},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.43900317},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.43779814},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.41781652},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.38481712},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.36843833},{"id":"https://openalex.org/C193536780","wikidata":"https://www.wikidata.org/wiki/Q1513153","display_name":"Edge detection","level":4,"score":0.36012262},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.24647349},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23867738},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.07742536},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2018.8546033","pdf_url":null,"source":{"id":"https://openalex.org/S4363607731","display_name":"2022 26th International Conference on Pattern Recognition (ICPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.51,"display_name":"Gender equality","id":"https://metadata.un.org/sdg/5"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1483464741","https://openalex.org/W1542656176","https://openalex.org/W1936857442","https://openalex.org/W2120773240","https://openalex.org/W2144848861","https://openalex.org/W2304667035","https://openalex.org/W2416918403","https://openalex.org/W2528176169","https://openalex.org/W2559854880","https://openalex.org/W2571974013","https://openalex.org/W2575163280","https://openalex.org/W2578824337","https://openalex.org/W2592020383","https://openalex.org/W2620705316","https://openalex.org/W2622119688","https://openalex.org/W2759766068","https://openalex.org/W2766591056"],"related_works":["https://openalex.org/W4312567938","https://openalex.org/W4283806690","https://openalex.org/W4281937456","https://openalex.org/W3169126738","https://openalex.org/W2739273756","https://openalex.org/W2545393398","https://openalex.org/W2545065926","https://openalex.org/W2387510934","https://openalex.org/W2356242818","https://openalex.org/W2348584852"],"abstract_inverted_index":{"Gender":[0],"identification":[1],"based":[2],"on":[3,155],"handwriting":[4],"analysis":[5,19],"has":[6],"received":[7],"a":[8,138],"special":[9],"attention":[10],"to":[11,76,81,181],"researchers":[12],"in":[13,87,106],"the":[14,82,98,118,121,135,171,183,186,192,195,200],"field":[15],"of":[16,45,68,71,92,120,162,185,194],"document":[17,139],"image":[18,108],"as":[20,142,148],"it":[21],"is":[22,115,132,140,146,153,203],"useful":[23],"for":[24,64,97,117],"several":[25],"real-time":[26],"applications":[27],"like":[28],"forensic,":[29],"population":[30],"counting,":[31],"etc.":[32],"In":[33],"this":[34],"paper,":[35],"we":[36],"explore":[37],"Multi-Gradient":[38],"Directional":[39],"(MGD)":[40],"features,":[41],"which":[42,79,159,175],"provide":[43],"direction":[44,55],"dominant":[46,69],"pixels":[47,70],"obtained":[48],"by":[49,109,143,149],"Canny":[50],"edge":[51],"image,":[52],"and":[53,102,168,170,178,205],"gradient":[54,65],"symmetry.":[56],"The":[57,90,151],"proposed":[58,187,201],"method":[59,152,202],"further":[60],"performs":[61],"histogram":[62],"operation":[63],"angle":[66],"information":[67],"respective":[72],"multi-gradient":[73],"directional":[74],"images":[75,161],"select":[77],"angles,":[78],"contribute":[80],"highest":[83],"peak.":[84],"This":[85],"results":[86],"feature":[88,93],"vectors.":[89],"process":[91],"vector":[94,119],"formation":[95],"continues":[96],"segmented":[99],"first,":[100],"second,":[101],"third":[103],"text":[104],"lines":[105,126],"each":[107],"male":[110],"or":[111,129],"female.":[112],"Next,":[113],"correlation":[114],"estimated":[116],"first":[122],"line":[123],"with":[124,191],"successive":[125],"until":[127],"converging":[128],"diverging":[130],"criteria":[131],"met.":[133],"If":[134],"convergence":[136],"happens,":[137],"considered":[141,147],"female,":[144],"else":[145],"male.":[150],"tested":[154],"our":[156],"own":[157],"dataset,":[158],"includes":[160,176],"different":[163],"scripts,":[164],"writers,":[165],"papers,":[166],"pens,":[167],"ages,":[169],"standard":[172],"database":[173],"QUWI":[174],"Arabic":[177],"English":[179],"texts,":[180],"demonstrate":[182],"efficiency":[184],"method.":[188],"Comparative":[189],"studies":[190],"state":[193],"art":[196],"methods":[197],"show":[198],"that":[199],"effective":[204],"useful.":[206]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2902510006","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2024-12-24T08:31:14.388538","created_date":"2018-12-11"}