{"id":"https://openalex.org/W2609641019","doi":"https://doi.org/10.1109/icpr.2016.7900275","title":"Pose estimation using Spectral and Singular Value recomposition","display_name":"Pose estimation using Spectral and Singular Value recomposition","publication_year":2016,"publication_date":"2016-12-01","ids":{"openalex":"https://openalex.org/W2609641019","doi":"https://doi.org/10.1109/icpr.2016.7900275","mag":"2609641019"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2016.7900275","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103841409","display_name":"Chandrasekhar Bhagavatula","orcid":null},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"funder","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chandrasekhar Bhagavatula","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057411492","display_name":"Raied Aljadaany","orcid":null},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"funder","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Raied Aljadaany","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5057959136","display_name":"Marios Savvides","orcid":null},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"funder","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Marios Savvides","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA","institution_ids":["https://openalex.org/I74973139"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.33,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.354375,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"4095","last_page":"4100"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.48147026},{"id":"https://openalex.org/keywords/singular-value","display_name":"Singular value","score":0.4320271}],"concepts":[{"id":"https://openalex.org/C22789450","wikidata":"https://www.wikidata.org/wiki/Q420904","display_name":"Singular value decomposition","level":2,"score":0.8641167},{"id":"https://openalex.org/C52102323","wikidata":"https://www.wikidata.org/wiki/Q1671968","display_name":"Pose","level":2,"score":0.722795},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.688406},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64137626},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.6175919},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.60632},{"id":"https://openalex.org/C2779304628","wikidata":"https://www.wikidata.org/wiki/Q3503480","display_name":"Face (sociological concept)","level":2,"score":0.5252718},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.490498},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.48147026},{"id":"https://openalex.org/C31510193","wikidata":"https://www.wikidata.org/wiki/Q1192553","display_name":"Facial recognition system","level":3,"score":0.47062305},{"id":"https://openalex.org/C109282560","wikidata":"https://www.wikidata.org/wiki/Q4166054","display_name":"Singular value","level":3,"score":0.4320271},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.063907444},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2016.7900275","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1492469939","https://openalex.org/W1495691011","https://openalex.org/W1539100311","https://openalex.org/W1598707800","https://openalex.org/W1905153633","https://openalex.org/W2022566595","https://openalex.org/W2022652211","https://openalex.org/W2040758894","https://openalex.org/W2047508432","https://openalex.org/W2069508203","https://openalex.org/W2098693229","https://openalex.org/W2105594236","https://openalex.org/W2121647436","https://openalex.org/W2141712375","https://openalex.org/W2162419281","https://openalex.org/W2172272445","https://openalex.org/W2296659146"],"related_works":["https://openalex.org/W4386721910","https://openalex.org/W4382583540","https://openalex.org/W4378770618","https://openalex.org/W4319586039","https://openalex.org/W2148568324","https://openalex.org/W2059545631","https://openalex.org/W2038393145","https://openalex.org/W2010100052","https://openalex.org/W1990844505","https://openalex.org/W1607100495"],"abstract_inverted_index":{"In":[0],"face":[1,9,32],"recognition":[2,20,39],"tasks,":[3],"the":[4,8,19,28,31,55,69,74,84,102,105,110,114,125,158,162,177],"changing":[5],"pose":[6,29,45,139,159],"of":[7,30,54,77,86,92,145,150],"can":[10,34,137],"cause":[11,18],"enough":[12],"information":[13],"to":[14,17,21,26,58],"be":[15],"lost":[16],"fail":[22],"so":[23],"being":[24],"able":[25],"determine":[27],"beforehand":[33],"allow":[35],"for":[36,44,117],"some":[37,51],"better":[38],"performance.":[40],"Many":[41],"methods":[42,123,182],"used":[43],"estimation":[46,140,175],"tasks":[47],"rely":[48],"on":[49,157,161,170,176,186],"finding":[50],"underlying":[52,75],"structure":[53,76],"data":[56,71],"given":[57],"create":[59],"a":[60,78,94,142,154],"classifier.":[61,79],"We":[62,119,133,166],"propose":[63],"an":[64,148],"alternative":[65],"method":[66,136],"in":[67,104],"which":[68],"training":[70],"itself":[72],"is":[73,81,97],"This":[80],"accomplished":[82],"through":[83],"use":[85],"matrix":[87,112],"decomposition":[88,106],"equations.":[89,132],"However,":[90],"instead":[91],"decomposing":[93],"matrix,":[95],"one":[96],"created":[98],"by":[99],"carefully":[100],"selecting":[101],"terms":[103],"equation":[107],"such":[108],"that":[109],"resulting":[111],"has":[113],"desired":[115],"properties":[116],"classification.":[118],"show":[120,134,168],"two":[121],"recomposition":[122],"using":[124],"Spectral":[126],"Decomposition":[127,131],"and":[128,147,173],"Singular":[129],"Value":[130],"this":[135],"perform":[138],"with":[141,180],"high":[143],"accuracy":[144,149,185],"85.21%":[146],"98.42%":[151],"when":[152],"allowing":[153],"\u00b115\u00b0":[155],"tolerance":[156],"estimate":[160],"CUbiC":[163],"FacePix":[164],"dataset.":[165],"also":[167],"results":[169],"both":[171],"yaw":[172,187],"pitch":[174],"Pointing'04":[178],"dataset":[179],"our":[181],"achieving":[183],"77.01%":[184],"estimation.":[188]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2609641019","counts_by_year":[{"year":2019,"cited_by_count":2},{"year":2017,"cited_by_count":2}],"updated_date":"2025-02-19T18:00:14.396557","created_date":"2017-05-05"}