{"id":"https://openalex.org/W2609112450","doi":"https://doi.org/10.1109/icpr.2016.7900164","title":"Deep neural network based hidden Markov model for offline handwritten Chinese text recognition","display_name":"Deep neural network based hidden Markov model for offline handwritten Chinese text recognition","publication_year":2016,"publication_date":"2016-12-01","ids":{"openalex":"https://openalex.org/W2609112450","doi":"https://doi.org/10.1109/icpr.2016.7900164","mag":"2609112450"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2016.7900164","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5066595711","display_name":"Jun Du","orcid":"https://orcid.org/0000-0002-2387-0389"},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"funder","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Du","raw_affiliation_strings":["University of Science and Technology of China, Hefei, Anhui, P. R. China"],"affiliations":[{"raw_affiliation_string":"University of Science and Technology of China, Hefei, Anhui, P. R. China","institution_ids":["https://openalex.org/I126520041"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100607794","display_name":"Zi-Rui Wang","orcid":"https://orcid.org/0000-0002-6600-8801"},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"funder","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"None Zi-Rui Wang","raw_affiliation_strings":["University of Science and Technology of China, Hefei, Anhui, P. R. China"],"affiliations":[{"raw_affiliation_string":"University of Science and Technology of China, Hefei, Anhui, P. R. China","institution_ids":["https://openalex.org/I126520041"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019901139","display_name":"Jian-Fang Zhai","orcid":null},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"funder","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jian-Fang Zhai","raw_affiliation_strings":["University of Science and Technology of China, Hefei, Anhui, P. R. China"],"affiliations":[{"raw_affiliation_string":"University of Science and Technology of China, Hefei, Anhui, P. R. China","institution_ids":["https://openalex.org/I126520041"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5015803470","display_name":"Jin-Shui Hu","orcid":null},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jin-Shui Hu","raw_affiliation_strings":["Iflytek Research, Hefei, Anhui, P. R. China"],"affiliations":[{"raw_affiliation_string":"Iflytek Research, Hefei, Anhui, P. R. China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.989,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":30,"citation_normalized_percentile":{"value":0.954297,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"3428","last_page":"3433"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14339","display_name":"Image Processing and 3D Reconstruction","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sliding-window-protocol","display_name":"Sliding window protocol","score":0.44723868},{"id":"https://openalex.org/keywords/word-error-rate","display_name":"Word error rate","score":0.4470694}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8214763},{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.8104584},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7377449},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.64441437},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.55435574},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.54614514},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.49963617},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.46675682},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.46277368},{"id":"https://openalex.org/C102392041","wikidata":"https://www.wikidata.org/wiki/Q592860","display_name":"Sliding window protocol","level":3,"score":0.44723868},{"id":"https://openalex.org/C40969351","wikidata":"https://www.wikidata.org/wiki/Q3516228","display_name":"Word error rate","level":2,"score":0.4470694},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.42215705},{"id":"https://openalex.org/C2778751112","wikidata":"https://www.wikidata.org/wiki/Q835016","display_name":"Window (computing)","level":2,"score":0.10113338},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2016.7900164","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.6,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1524333225","https://openalex.org/W1582482241","https://openalex.org/W1631260214","https://openalex.org/W1978964824","https://openalex.org/W2005035880","https://openalex.org/W2024986448","https://openalex.org/W2033404582","https://openalex.org/W2046932483","https://openalex.org/W2047923155","https://openalex.org/W2055505277","https://openalex.org/W2077574412","https://openalex.org/W2100721436","https://openalex.org/W2111364271","https://openalex.org/W2112796928","https://openalex.org/W2115675483","https://openalex.org/W2117539524","https://openalex.org/W2122585011","https://openalex.org/W2123119958","https://openalex.org/W2127141656","https://openalex.org/W2133463914","https://openalex.org/W2134969019","https://openalex.org/W2137849729","https://openalex.org/W2140090592","https://openalex.org/W2143246460","https://openalex.org/W2149834450","https://openalex.org/W2150583827","https://openalex.org/W2152028561","https://openalex.org/W2156338447","https://openalex.org/W2157911321","https://openalex.org/W2160815625","https://openalex.org/W2167497943","https://openalex.org/W2168171912","https://openalex.org/W2170866695","https://openalex.org/W2916727894","https://openalex.org/W2949191843","https://openalex.org/W4230880351","https://openalex.org/W4292890447"],"related_works":["https://openalex.org/W4245698648","https://openalex.org/W4221142855","https://openalex.org/W3133710586","https://openalex.org/W2594897229","https://openalex.org/W2405257913","https://openalex.org/W2151348424","https://openalex.org/W2125964738","https://openalex.org/W2098529290","https://openalex.org/W2050138804","https://openalex.org/W2026402306"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"a":[3,139,156,175],"novel":[4],"segmentation-free":[5,162],"approach":[6,127,154,163,173],"using":[7,164],"deep":[8],"neural":[9,170],"network":[10,171],"based":[11],"hidden":[12],"Markov":[13],"model":[14,100,107],"(DNN-HMM)":[15],"for":[16,43,61,108],"offline":[17],"handwritten":[18],"Chinese":[19],"text":[20,67],"recognition.":[21],"In":[22],"the":[23,44,48,56,62,66,81,88,96,104,109,115,125,130,149,161],"general":[24],"Bayesian":[25,110],"framework,":[26],"three":[27],"key":[28],"issues":[29],"are":[30,59],"comprehensively":[31],"investigated,":[32],"namely":[33],"feature":[34,45],"extraction,":[35],"character":[36,78,97,106,140],"modeling,":[37],"and":[38,160],"language":[39,99],"modeling.":[40],"First,":[41],"as":[42],"extraction":[46],"on":[47,114],"basis":[49],"of":[50,91,120,144,158,177],"each":[51,75],"frame":[52],"or":[53],"sliding":[54],"window,":[55],"gradient-based":[57],"features":[58],"extracted":[60],"DNN-based":[63,82],"classifier.":[64],"Second,":[65],"line":[68],"is":[69,84,101],"sequentially":[70],"modeled":[71],"by":[72],"HMMs":[73],"with":[74,103],"representing":[76],"one":[77],"class.":[79],"Meanwhile":[80],"classifier":[83],"adopted":[85],"to":[86,135],"calculate":[87],"posterior":[89],"probability":[90],"all":[92],"HMM":[93],"states.":[94],"Finally,":[95],"n-gram":[98],"integrated":[102],"DNN-HMM":[105],"decision.":[111],"The":[112],"experiments":[113],"ICDAR":[116],"2013":[117],"competition":[118],"task":[119],"CASIA-HWDB":[121],"database":[122],"show":[123],"that":[124],"proposed":[126],"can":[128],"achieve":[129],"best":[131,151],"published":[132],"recognition":[133],"results":[134],"our":[136],"knowledge,":[137],"yielding":[138],"error":[141],"rate":[142],"(CER)":[143],"6.50%,":[145],"which":[146],"significantly":[147],"outperforms":[148],"previously":[150],"reported":[152],"oversegmentation":[153],"(with":[155,174],"CER":[157,176],"9.25%)":[159],"multidimensional":[165],"long-short":[166],"term":[167],"memory":[168],"recurrent":[169],"(MDLSTM-RNN)":[172],"10.6%).":[178]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2609112450","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":4},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":4},{"year":2016,"cited_by_count":1}],"updated_date":"2025-04-06T21:29:16.083264","created_date":"2017-05-05"}