{"id":"https://openalex.org/W2607964754","doi":"https://doi.org/10.1109/icpr.2016.7899891","title":"A Bayesian part-based approach to 3D human pose and camera estimation","display_name":"A Bayesian part-based approach to 3D human pose and camera estimation","publication_year":2016,"publication_date":"2016-12-01","ids":{"openalex":"https://openalex.org/W2607964754","doi":"https://doi.org/10.1109/icpr.2016.7899891","mag":"2607964754"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2016.7899891","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5043410925","display_name":"Ernesto Brau","orcid":"https://orcid.org/0000-0003-0380-8630"},"institutions":[{"id":"https://openalex.org/I103531236","display_name":"Boston College","ror":"https://ror.org/02n2fzt79","country_code":"US","type":"education","lineage":["https://openalex.org/I103531236"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ernesto Brau","raw_affiliation_strings":["Computer Science Department, Boston College, Chestnut Hill, MA"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, Boston College, Chestnut Hill, MA","institution_ids":["https://openalex.org/I103531236"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5053349677","display_name":"Hao Jiang","orcid":"https://orcid.org/0000-0002-3355-0063"},"institutions":[{"id":"https://openalex.org/I103531236","display_name":"Boston College","ror":"https://ror.org/02n2fzt79","country_code":"US","type":"education","lineage":["https://openalex.org/I103531236"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hao Jiang","raw_affiliation_strings":["Computer Science Department, Boston College, Chestnut Hill, MA"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, Boston College, Chestnut Hill, MA","institution_ids":["https://openalex.org/I103531236"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.414,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.608524,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"1762","last_page":"1767"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.4530513}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.79075813},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7246452},{"id":"https://openalex.org/C52102323","wikidata":"https://www.wikidata.org/wiki/Q1671968","display_name":"Pose","level":2,"score":0.64164233},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.58001757},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.56753147},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.5168484},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.4530513},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37568074},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.35156322}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2016.7899891","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1903029394","https://openalex.org/W1943191679","https://openalex.org/W1983154976","https://openalex.org/W2013640163","https://openalex.org/W2017695267","https://openalex.org/W2030536784","https://openalex.org/W2036545421","https://openalex.org/W2039262381","https://openalex.org/W2052747804","https://openalex.org/W2088196373","https://openalex.org/W2099333815","https://openalex.org/W2101032778","https://openalex.org/W2105041273","https://openalex.org/W2112517951","https://openalex.org/W2113325037","https://openalex.org/W2118931255","https://openalex.org/W2128271252","https://openalex.org/W2131263044","https://openalex.org/W2134704262","https://openalex.org/W2135826343","https://openalex.org/W2156802865","https://openalex.org/W2171125807","https://openalex.org/W2293220651","https://openalex.org/W2395611524","https://openalex.org/W2954040150"],"related_works":["https://openalex.org/W4386190339","https://openalex.org/W2968424575","https://openalex.org/W2795035211","https://openalex.org/W2580650124","https://openalex.org/W2562263695","https://openalex.org/W2160108762","https://openalex.org/W2147201983","https://openalex.org/W2135187896","https://openalex.org/W2017034551","https://openalex.org/W2015518264"],"abstract_inverted_index":{"We":[0,17,45,120,144],"present":[1],"a":[2,13,19,23,37,47,51,76,111,117,187],"Bayesian":[3],"framework":[4,184],"for":[5,41,59,90,141,190],"estimating":[6],"3D":[7,24,54,125],"human":[8,48],"pose":[9,25,49],"and":[10,63,67,85,127,151,162,193],"camera":[11,128],"from":[12,157],"single":[14],"RGB":[15],"image.":[16,119],"develop":[18],"generative":[20],"model":[21,100],"where":[22,170],"is":[26],"rendered":[27],"onto":[28],"an":[29],"image":[30],"(via":[31],"the":[32,71,83,96,99,102,122,131,146,158,180,195],"camera),":[33],"which":[34,106],"then":[35],"generates":[36],"detection":[38],"probability":[39,104],"map":[40],"each":[42,60],"body":[43,61],"part.":[44],"represent":[46],"with":[50,136],"set":[52],"of":[53,98,124,148,182],"cylinders":[55],"in":[56],"space,":[57],"one":[58],"part,":[62],"we":[64,74,171,178],"place":[65],"kinematic":[66],"self-intersection":[68],"priors":[69],"on":[70,116,166],"model.":[72],"Importantly,":[73],"use":[75,86],"graphics":[77],"engine":[78],"(e.g.,":[79],"OpenGL)":[80],"to":[81,93],"render":[82],"pose,":[84],"its":[87],"built-in":[88],"capabilities":[89],"color":[91],"blending":[92],"efficiently":[94],"compute":[95],"likelihood":[97,152,188],"given":[101],"observed":[103],"maps,":[105],"are":[107],"obtained":[108],"by":[109,185],"running":[110],"convolutional":[112],"neural":[113],"network":[114],"classifier":[115],"test":[118,163],"explore":[121],"space":[123],"poses":[126,156],"configurations":[129],"via":[130],"Hybrid":[132],"Monte":[133],"Carlo":[134],"algorithm,":[135],"sampling":[137],"moves":[138],"designed":[139],"specifically":[140],"this":[142],"problem.":[143],"train":[145],"parameters":[147],"our":[149,164,183],"prior":[150],"distributions":[153],"using":[154],"annotated":[155],"CMU":[159],"mocap":[160],"database,":[161],"algorithm":[165],"two":[167],"benchmark":[168],"datasets,":[169],"compare":[172],"performance":[173,197],"against":[174],"state-of-the-art":[175],"methods.":[176],"Additionally,":[177],"demonstrate":[179],"flexibility":[181],"incorporating":[186],"function":[189],"depth":[191],"images":[192],"showing":[194],"associated":[196],"gains.":[198]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2607964754","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":1}],"updated_date":"2024-12-09T05:56:29.288158","created_date":"2017-05-05"}