{"id":"https://openalex.org/W2608603161","doi":"https://doi.org/10.1109/icpr.2016.7899863","title":"Co-regularized kernel k-means for multi-view clustering","display_name":"Co-regularized kernel k-means for multi-view clustering","publication_year":2016,"publication_date":"2016-12-01","ids":{"openalex":"https://openalex.org/W2608603161","doi":"https://doi.org/10.1109/icpr.2016.7899863","mag":"2608603161"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2016.7899863","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103234077","display_name":"Yongkai Ye","orcid":"https://orcid.org/0000-0002-2945-2065"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"None Yongkai Ye","raw_affiliation_strings":["College of Computer, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Computer, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101727888","display_name":"Xinwang Liu","orcid":"https://orcid.org/0000-0001-9066-1475"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinwang Liu","raw_affiliation_strings":["College of Computer, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Computer, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089193327","display_name":"Jianping Yin","orcid":"https://orcid.org/0000-0002-5474-4764"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jianping Yin","raw_affiliation_strings":["College of Computer, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Computer, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5069681054","display_name":"En Zhu","orcid":"https://orcid.org/0000-0003-2305-7555"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"En Zhu","raw_affiliation_strings":["College of Computer, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Computer, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.329,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":27,"citation_normalized_percentile":{"value":0.952855,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"1583","last_page":"1588"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9891,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/constrained-clustering","display_name":"Constrained clustering","score":0.50566316},{"id":"https://openalex.org/keywords/data-stream-clustering","display_name":"Data stream clustering","score":0.48992938},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.4843951},{"id":"https://openalex.org/keywords/consensus-clustering","display_name":"Consensus clustering","score":0.47078174},{"id":"https://openalex.org/keywords/clustering-high-dimensional-data","display_name":"Clustering high-dimensional data","score":0.4211075}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.9235094},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.69194734},{"id":"https://openalex.org/C94641424","wikidata":"https://www.wikidata.org/wiki/Q5172845","display_name":"Correlation clustering","level":3,"score":0.6733496},{"id":"https://openalex.org/C33704608","wikidata":"https://www.wikidata.org/wiki/Q5014717","display_name":"CURE data clustering algorithm","level":4,"score":0.654358},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.54485935},{"id":"https://openalex.org/C104047586","wikidata":"https://www.wikidata.org/wiki/Q5033439","display_name":"Canopy clustering algorithm","level":4,"score":0.50983113},{"id":"https://openalex.org/C27964816","wikidata":"https://www.wikidata.org/wiki/Q5164359","display_name":"Constrained clustering","level":5,"score":0.50566316},{"id":"https://openalex.org/C193143536","wikidata":"https://www.wikidata.org/wiki/Q5227360","display_name":"Data stream clustering","level":5,"score":0.48992938},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.4843951},{"id":"https://openalex.org/C17212007","wikidata":"https://www.wikidata.org/wiki/Q5511111","display_name":"Fuzzy clustering","level":3,"score":0.4772596},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47244126},{"id":"https://openalex.org/C186767784","wikidata":"https://www.wikidata.org/wiki/Q5162841","display_name":"Consensus clustering","level":5,"score":0.47078174},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4394525},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.42798123},{"id":"https://openalex.org/C184509293","wikidata":"https://www.wikidata.org/wiki/Q5136711","display_name":"Clustering high-dimensional data","level":3,"score":0.4211075},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24490899},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2016.7899863","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1670132599","https://openalex.org/W1991311318","https://openalex.org/W2008372719","https://openalex.org/W2014069437","https://openalex.org/W2032642422","https://openalex.org/W2043819533","https://openalex.org/W2081549451","https://openalex.org/W2085789144","https://openalex.org/W2095692770","https://openalex.org/W2101324110","https://openalex.org/W2108502868","https://openalex.org/W2142674578","https://openalex.org/W2154415691","https://openalex.org/W2169529055","https://openalex.org/W2291321038","https://openalex.org/W2405459681","https://openalex.org/W2528144785","https://openalex.org/W87822204"],"related_works":["https://openalex.org/W4301002638","https://openalex.org/W4253632195","https://openalex.org/W3186815950","https://openalex.org/W3146523624","https://openalex.org/W3124860551","https://openalex.org/W2371010743","https://openalex.org/W2309230723","https://openalex.org/W2202413591","https://openalex.org/W2163563073","https://openalex.org/W2160785859"],"abstract_inverted_index":{"In":[0],"clustering":[1,12,28,43,74,84,89,118],"applications,":[2],"multiple":[3,46],"views":[4,23,47,61,110],"of":[5,37,96,101,109,121,140,148],"the":[6,35,42,56,73,87,94,107,116,132,146],"data":[7],"are":[8,111],"often":[9],"available.":[10],"Although":[11],"could":[13],"be":[14,49,68],"done":[15],"within":[16],"each":[17],"view":[18],"independently,":[19],"exploiting":[20],"information":[21],"across":[22],"is":[24,40,90,128],"promising":[25],"to":[26,67,130],"gain":[27],"accuracy":[29],"improvement.":[30],"A":[31,124],"common":[32],"assumption":[33,65],"in":[34],"field":[36],"multi-view":[38],"learning":[39],"that":[41,105],"results":[44],"from":[45],"should":[48],"consistent":[50],"with":[51,115,137],"a":[52,82,138],"latent":[53,117],"clustering.":[54],"However,":[55],"potential":[57],"noise":[58],"among":[59],"some":[60],"would":[62],"make":[63],"this":[64,78],"difficult":[66],"satisfied,":[69],"which":[70],"finally":[71],"hurts":[72],"performance.":[75],"To":[76],"address":[77],"issue,":[79],"we":[80],"propose":[81],"novel":[83],"algorithm":[85,127],"where":[86],"intrinsic":[88],"found":[91],"by":[92],"maximizing":[93],"sum":[95],"weighted":[97],"similarities":[98],"between":[99],"clusterings":[100,120],"different":[102,122],"views.":[103,123],"Weights":[104],"indicate":[106],"qualities":[108],"learned":[112],"simultaneously":[113],"along":[114],"and":[119],"three-step":[125],"alternative":[126],"designed":[129],"solve":[131],"problem":[133],"efficiently.":[134],"Empirical":[135],"comparisons":[136],"number":[139],"baselines":[141],"on":[142],"various":[143],"datasets":[144],"confirm":[145],"efficacy":[147],"our":[149],"approach.":[150]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2608603161","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":7},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":1}],"updated_date":"2025-05-02T12:52:39.708875","created_date":"2017-05-05"}