{"id":"https://openalex.org/W2107835803","doi":"https://doi.org/10.1109/icpr.2010.1142","title":"Probabilistic Measure for Signature Verification Based on Bayesian Learning","display_name":"Probabilistic Measure for Signature Verification Based on Bayesian Learning","publication_year":2010,"publication_date":"2010-08-01","ids":{"openalex":"https://openalex.org/W2107835803","doi":"https://doi.org/10.1109/icpr.2010.1142","mag":"2107835803"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2010.1142","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5067003424","display_name":"Danjun Pu","orcid":null},"institutions":[{"id":"https://openalex.org/I63190737","display_name":"University at Buffalo, State University of New York","ror":"https://ror.org/01y64my43","country_code":"US","type":"education","lineage":["https://openalex.org/I63190737"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Danjun Pu","raw_affiliation_strings":["Center of Excellence for Document Anal. & Recognition(CEDAR), Univ. at Buffalo, The State Univ. of New York, Buffalo, NY, USA"],"affiliations":[{"raw_affiliation_string":"Center of Excellence for Document Anal. & Recognition(CEDAR), Univ. at Buffalo, The State Univ. of New York, Buffalo, NY, USA","institution_ids":["https://openalex.org/I63190737"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5102711181","display_name":"Sargur N. Srihari","orcid":"https://orcid.org/0000-0002-1554-716X"},"institutions":[{"id":"https://openalex.org/I63190737","display_name":"University at Buffalo, State University of New York","ror":"https://ror.org/01y64my43","country_code":"US","type":"education","lineage":["https://openalex.org/I63190737"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sargur N. Srihari","raw_affiliation_strings":["Center of Excellence for Document Anal. & Recognition(CEDAR), Univ. at Buffalo, The State Univ. of New York, Buffalo, NY, USA"],"affiliations":[{"raw_affiliation_string":"Center of Excellence for Document Anal. & Recognition(CEDAR), Univ. at Buffalo, The State Univ. of New York, Buffalo, NY, USA","institution_ids":["https://openalex.org/I63190737"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.068,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.577059,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"1188","last_page":"1191"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9932,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11269","display_name":"Algorithms and Data Compression","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/signature","display_name":"Signature (topology)","score":0.63950986}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7003013},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.65291035},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.6436161},{"id":"https://openalex.org/C2779696439","wikidata":"https://www.wikidata.org/wiki/Q7512811","display_name":"Signature (topology)","level":2,"score":0.63950986},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.57286656},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.55362195},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.49648315},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4927769},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4804363},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43894583},{"id":"https://openalex.org/C57830394","wikidata":"https://www.wikidata.org/wiki/Q278079","display_name":"Posterior probability","level":3,"score":0.42732903},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.42322078},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34647977},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2113787},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2010.1142","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.75,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":9,"referenced_works":["https://openalex.org/W1488552786","https://openalex.org/W1992003618","https://openalex.org/W2018196670","https://openalex.org/W2105285775","https://openalex.org/W2121459504","https://openalex.org/W2143707047","https://openalex.org/W2146850796","https://openalex.org/W2911709767","https://openalex.org/W4232383088"],"related_works":["https://openalex.org/W856257623","https://openalex.org/W4255837520","https://openalex.org/W2892315154","https://openalex.org/W2387011115","https://openalex.org/W2168674042","https://openalex.org/W2131935101","https://openalex.org/W2060045818","https://openalex.org/W2040227828","https://openalex.org/W2032094637","https://openalex.org/W1671124163"],"abstract_inverted_index":{"Signature":[0],"verification":[1],"is":[2,12,152],"a":[3,15,18,23,34,38,59,86,104,132,138],"common":[4],"task":[5],"in":[6,155],"forensic":[7],"document":[8],"analysis.":[9],"The":[10,73],"goal":[11],"to":[13,22],"make":[14],"decision":[16,144],"whether":[17],"questioned":[19],"signature":[20],"belongs":[21],"set":[24],"of":[25,28,42,67,83,88,97,103,111,126,142,148,158],"known":[26,43,89,160],"signatures":[27,44],"an":[29],"individual":[30],"or":[31,53],"not.":[32],"In":[33],"typical":[35],"forgery":[36,118],"case":[37,157],"very":[39],"limited":[40,159],"number":[41],"may":[45],"be":[46],"available,":[47],"with":[48],"as":[49,51],"few":[50,70],"four":[52],"five":[54],"knows.":[55],"Here":[56],"we":[57],"describe":[58],"fully":[60],"Bayesian":[61,150],"approach":[62],"which":[63],"overcomes":[64],"the":[65,94,100,112,121,127,143,146,149,156],"limitation":[66],"having":[68],"too":[69],"genuine":[71,101,116],"samples.":[72,161],"algorithm":[74],"has":[75],"three":[76],"steps:":[77],"Step":[78,91,107],"1:":[79],"Learn":[80],"prior":[81],"distributions":[82,96],"parameters":[84,98],"from":[85,114],"population":[87],"signatures;":[90],"2:":[92],"Determine":[93,109],"posterior":[95],"using":[99],"samples":[102],"particular":[105],"person;":[106],"3:":[108],"probabilities":[110],"query":[113],"both":[115],"and":[117,120,145],"classes":[119],"Log":[122],"Likelihood":[123],"Ratio":[124],"(LLR)":[125],"query.":[128],"Rather":[129],"than":[130],"give":[131],"hard":[133],"decision,":[134],"this":[135],"method":[136],"provides":[137],"probabilistic":[139],"measure":[140],"LLR":[141],"performance":[147],"Learning":[151],"improved":[153],"especially":[154]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2107835803","counts_by_year":[{"year":2015,"cited_by_count":1},{"year":2013,"cited_by_count":2}],"updated_date":"2024-12-10T17:36:27.817978","created_date":"2016-06-24"}