{"id":"https://openalex.org/W2165824859","doi":"https://doi.org/10.1109/icpr.2006.171","title":"A Semi-supervised SVM for Manifold Learning","display_name":"A Semi-supervised SVM for Manifold Learning","publication_year":2006,"publication_date":"2006-01-01","ids":{"openalex":"https://openalex.org/W2165824859","doi":"https://doi.org/10.1109/icpr.2006.171","mag":"2165824859"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2006.171","pdf_url":null,"source":{"id":"https://openalex.org/S4363607731","display_name":"2022 26th International Conference on Pattern Recognition (ICPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101079687","display_name":"Zhili Wu","orcid":null},"institutions":[{"id":"https://openalex.org/I141568987","display_name":"Hong Kong Baptist University","ror":"https://ror.org/0145fw131","country_code":"HK","type":"education","lineage":["https://openalex.org/I141568987"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"None Zhili Wu","raw_affiliation_strings":["Computer Science Department, Hong Kong Baptist University, Hong Kong, China"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, Hong Kong Baptist University, Hong Kong, China","institution_ids":["https://openalex.org/I141568987"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010746851","display_name":"Chun-hung Li","orcid":null},"institutions":[{"id":"https://openalex.org/I141568987","display_name":"Hong Kong Baptist University","ror":"https://ror.org/0145fw131","country_code":"HK","type":"education","lineage":["https://openalex.org/I141568987"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"None Chun-hung Li","raw_affiliation_strings":["Computer Science Department, Hong Kong Baptist University, Hong Kong, China"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, Hong Kong Baptist University, Hong Kong, China","institution_ids":["https://openalex.org/I141568987"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100886935","display_name":"Zhu Ji","orcid":null},"institutions":[{"id":"https://openalex.org/I27837315","display_name":"University of Michigan\u2013Ann Arbor","ror":"https://ror.org/00jmfr291","country_code":"US","type":"education","lineage":["https://openalex.org/I27837315"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"None Ji Zhu","raw_affiliation_strings":["Department of Statistics, University of Michigan, USA"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, University of Michigan, USA","institution_ids":["https://openalex.org/I27837315"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100606274","display_name":"Jian Huang","orcid":"https://orcid.org/0000-0002-4638-2636"},"institutions":[{"id":"https://openalex.org/I4210127074","display_name":"Zhongshan Hospital","ror":"https://ror.org/032x22645","country_code":"CN","type":"healthcare","lineage":["https://openalex.org/I4210127074"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"None Jian Huang","raw_affiliation_strings":["Computer Science Department, Zhongshan University, China"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, Zhongshan University, China","institution_ids":["https://openalex.org/I4210127074"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.245,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.579527,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"490","last_page":"493"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9957,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hinge-loss","display_name":"Hinge loss","score":0.7535708},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.61663353},{"id":"https://openalex.org/keywords/manifold-alignment","display_name":"Manifold alignment","score":0.5772906},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.4893729},{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.41585785}],"concepts":[{"id":"https://openalex.org/C39891107","wikidata":"https://www.wikidata.org/wiki/Q5767098","display_name":"Hinge loss","level":3,"score":0.7535708},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.69679356},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6348374},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.61663353},{"id":"https://openalex.org/C58973888","wikidata":"https://www.wikidata.org/wiki/Q1041418","display_name":"Semi-supervised learning","level":2,"score":0.6061702},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.58903897},{"id":"https://openalex.org/C153120616","wikidata":"https://www.wikidata.org/wiki/Q17068315","display_name":"Manifold alignment","level":4,"score":0.5772906},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5421591},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5386922},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.506605},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.4893729},{"id":"https://openalex.org/C151876577","wikidata":"https://www.wikidata.org/wiki/Q7049464","display_name":"Nonlinear dimensionality reduction","level":3,"score":0.47975385},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.43408477},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.43263403},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.41585785},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.19352502},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.09593144},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.09060982},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.07737386},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2006.171","pdf_url":null,"source":{"id":"https://openalex.org/S4363607731","display_name":"2022 26th International Conference on Pattern Recognition (ICPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1486280163","https://openalex.org/W1510147702","https://openalex.org/W1578099820","https://openalex.org/W1578196132","https://openalex.org/W1966949944","https://openalex.org/W2053186076","https://openalex.org/W2097308346","https://openalex.org/W2104290444","https://openalex.org/W2116444583","https://openalex.org/W2131791003","https://openalex.org/W2146728697","https://openalex.org/W2148603752","https://openalex.org/W2152859659","https://openalex.org/W2154455818"],"related_works":["https://openalex.org/W65619410","https://openalex.org/W3109610583","https://openalex.org/W2944373987","https://openalex.org/W2391701611","https://openalex.org/W2387045723","https://openalex.org/W2375518579","https://openalex.org/W2149544245","https://openalex.org/W2112684860","https://openalex.org/W2075848805","https://openalex.org/W117517268"],"abstract_inverted_index":{"Many":[0],"classification":[1],"tasks":[2,85],"benefit":[3],"from":[4,54],"integrating":[5],"manifold":[6,29,65],"learning":[7,14],"with":[8,34],"semi-supervised":[9,18],"learning.":[10],"By":[11],"formulating":[12],"the":[13,28,35,51,55,63,68,73,107],"task":[15,48],"in":[16,45],"a":[17,22,46,98],"manner,":[19],"we":[20],"propose":[21],"novel":[23],"objective":[24],"function":[25],"that":[26],"combines":[27],"consistency":[30],"of":[31,38,61,67,110],"whole":[32,69],"dataset":[33,70],"hinge":[36],"loss":[37],"class":[39],"label":[40],"prediction.":[41],"This":[42],"formulation":[43],"results":[44],"SVM-alike":[47],"operating":[49],"on":[50,79],"kernel":[52],"derived":[53],"graph":[56],"Laplacian,":[57],"and":[58,71,81],"is":[59,93,102,105],"capable":[60],"capturing":[62],"intrinsic":[64],"structure":[66],"maximizing":[72],"margin":[74],"separating":[75],"labelled":[76],"examples.":[77],"Results":[78],"face":[80],"handwritten":[82],"digit":[83],"recognition":[84],"show":[86],"significant":[87],"performance":[88,91],"gain.":[89],"The":[90],"gain":[92],"particularly":[94],"impressive":[95],"when":[96],"only":[97],"small":[99],"training":[100],"set":[101],"available,":[103],"which":[104],"often":[106],"true":[108],"scenario":[109],"many":[111],"real-world":[112],"problems.":[113]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2165824859","counts_by_year":[{"year":2017,"cited_by_count":1},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":1}],"updated_date":"2024-12-07T16:54:42.247867","created_date":"2016-06-24"}