{"id":"https://openalex.org/W4256056790","doi":"https://doi.org/10.1109/icpr.2004.1333844","title":"A dynamic approach to learning vector quantization","display_name":"A dynamic approach to learning vector quantization","publication_year":2004,"publication_date":"2004-01-01","ids":{"openalex":"https://openalex.org/W4256056790","doi":"https://doi.org/10.1109/icpr.2004.1333844"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2004.1333844","pdf_url":null,"source":{"id":"https://openalex.org/S4363608750","display_name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057804135","display_name":"Claudio De Stefano","orcid":"https://orcid.org/0000-0002-7654-6849"},"institutions":[{"id":"https://openalex.org/I186995768","display_name":"Universit\u00e0 degli studi di Cassino e del Lazio Meridionale","ror":"https://ror.org/04nxkaq16","country_code":"IT","type":"education","lineage":["https://openalex.org/I186995768"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"C. De Stefano","raw_affiliation_strings":["DAEIIMI \u2013 Universita' di Cassino, ITALY"],"affiliations":[{"raw_affiliation_string":"DAEIIMI \u2013 Universita' di Cassino, ITALY","institution_ids":["https://openalex.org/I186995768"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5105936332","display_name":"G. D\u2019Elia","orcid":null},"institutions":[{"id":"https://openalex.org/I186995768","display_name":"Universit\u00e0 degli studi di Cassino e del Lazio Meridionale","ror":"https://ror.org/04nxkaq16","country_code":"IT","type":"education","lineage":["https://openalex.org/I186995768"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"G. D'Elia","raw_affiliation_strings":["DAEIIMI \u2013 Universita' di Cassino, ITALY"],"affiliations":[{"raw_affiliation_string":"DAEIIMI \u2013 Universita' di Cassino, ITALY","institution_ids":["https://openalex.org/I186995768"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5048265453","display_name":"Angelo Marcelli","orcid":"https://orcid.org/0000-0002-2019-2826"},"institutions":[{"id":"https://openalex.org/I186995768","display_name":"Universit\u00e0 degli studi di Cassino e del Lazio Meridionale","ror":"https://ror.org/04nxkaq16","country_code":"IT","type":"education","lineage":["https://openalex.org/I186995768"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"A. Marcelli","raw_affiliation_strings":["DAEIIMI \u2013 Universita' di Cassino, ITALY"],"affiliations":[{"raw_affiliation_string":"DAEIIMI \u2013 Universita' di Cassino, ITALY","institution_ids":["https://openalex.org/I186995768"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.729,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":11,"citation_normalized_percentile":{"value":0.685833,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"601","last_page":"604 Vol.4"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9932,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/learning-vector-quantization","display_name":"Learning vector quantization","score":0.93536985},{"id":"https://openalex.org/keywords/competitive-learning","display_name":"Competitive learning","score":0.81913745},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.5191342},{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.48786736},{"id":"https://openalex.org/keywords/basis","display_name":"Basis (linear algebra)","score":0.41017497}],"concepts":[{"id":"https://openalex.org/C40567965","wikidata":"https://www.wikidata.org/wiki/Q1820283","display_name":"Learning vector quantization","level":3,"score":0.93536985},{"id":"https://openalex.org/C120822770","wikidata":"https://www.wikidata.org/wiki/Q5156355","display_name":"Competitive learning","level":3,"score":0.81913745},{"id":"https://openalex.org/C199833920","wikidata":"https://www.wikidata.org/wiki/Q612536","display_name":"Vector quantization","level":2,"score":0.7291306},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.69934964},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.600146},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.52990013},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.5191342},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.5061917},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.48786736},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.46576452},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4609265},{"id":"https://openalex.org/C8038995","wikidata":"https://www.wikidata.org/wiki/Q1152135","display_name":"Unsupervised learning","level":2,"score":0.45965308},{"id":"https://openalex.org/C12426560","wikidata":"https://www.wikidata.org/wiki/Q189569","display_name":"Basis (linear algebra)","level":2,"score":0.41017497},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.32804072},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21584362},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2004.1333844","pdf_url":null,"source":{"id":"https://openalex.org/S4363608750","display_name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":9,"referenced_works":["https://openalex.org/W1587362683","https://openalex.org/W1991848143","https://openalex.org/W2002182716","https://openalex.org/W2071781501","https://openalex.org/W2098929365","https://openalex.org/W2107588225","https://openalex.org/W2133515443","https://openalex.org/W2168993425","https://openalex.org/W4213332169"],"related_works":["https://openalex.org/W4372294415","https://openalex.org/W4243803532","https://openalex.org/W3148658660","https://openalex.org/W2540293547","https://openalex.org/W2163389298","https://openalex.org/W2142248489","https://openalex.org/W2100492357","https://openalex.org/W2071781501","https://openalex.org/W1938766623","https://openalex.org/W1518241128"],"abstract_inverted_index":{"Learning":[0],"vector":[1],"quantization":[2],"networks":[3],"are":[4,22],"generally":[5,76],"considered":[6],"a":[7,44,90,119],"powerful":[8],"pattern":[9],"recognition":[10],"tool.":[11],"Their":[12],"main":[13],"drawback,":[14],"however,":[15],"is":[16],"the":[17,28,50,66,80,85,101,116,135],"competitive":[18,53],"learning":[19,54],"algorithm":[20,94],"they":[21],"based":[23,42],"upon,":[24],"that":[25],"suffers":[26],"of":[27,68,72,82,104,118,121,131,137],"so":[29],"called":[30],"underutilized":[31],"or":[32,112],"dead":[33],"unit":[34],"problem.":[35],"To":[36],"solve":[37],"this":[38],"problem,":[39],"algorithms":[40],"substantially":[41],"on":[43,65,115,128],"modified":[45],"distance":[46],"calculation,":[47],"such":[48],"as":[49],"frequency":[51],"sensitive":[52],"(FSCL),":[55],"have":[56],"been":[57],"proposed,":[58],"but":[59],"their":[60,122],"attainable":[61],"performance":[62],"strongly":[63],"depends":[64],"selection":[67],"an":[69],"appropriate":[70],"number":[71,81,103],"neurons.":[73],"This":[74],"choice":[75],"require":[77],"knowledge":[78],"about":[79],"clusters":[83],"in":[84],"feature":[86],"space.":[87],"We":[88],"propose":[89],"new":[91],"supervised":[92],"training":[93],"for":[95,106],"LVQ":[96],"neural":[97],"networks,":[98],"which":[99],"provide":[100],"optimal":[102],"neurons":[105,114],"each":[107],"class":[108],"by":[109],"dynamically":[110],"adding":[111],"removing":[113],"basis":[117],"measure":[120],"performance.":[123],"The":[124],"experimental":[125],"results,":[126],"performed":[127],"different":[129],"databases":[130],"synthetic":[132],"data,":[133],"confirmed":[134],"effectiveness":[136],"our":[138],"approach.":[139]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4256056790","counts_by_year":[{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":2},{"year":2014,"cited_by_count":1}],"updated_date":"2025-01-17T00:29:35.571573","created_date":"2022-05-12"}