{"id":"https://openalex.org/W2169374554","doi":"https://doi.org/10.1109/icpr.2000.906148","title":"Constrained mixture modeling of intrinsically low-dimensional distributions","display_name":"Constrained mixture modeling of intrinsically low-dimensional distributions","publication_year":2002,"publication_date":"2002-11-11","ids":{"openalex":"https://openalex.org/W2169374554","doi":"https://doi.org/10.1109/icpr.2000.906148","mag":"2169374554"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2000.906148","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5110812507","display_name":"J. Portegies Zwart","orcid":null},"institutions":[{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]},{"id":"https://openalex.org/I148297040","display_name":"Netherlands Organisation for Applied Scientific Research","ror":"https://ror.org/01bnjb948","country_code":"NL","type":"nonprofit","lineage":["https://openalex.org/I148297040"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"J.P. Zwart","raw_affiliation_strings":["IAS Group, Department of Computer Science, University of Amsterdam, Netherlands","TNO Physics and Electronics Laboratory, The Hague, Netherlands"],"affiliations":[{"raw_affiliation_string":"IAS Group, Department of Computer Science, University of Amsterdam, Netherlands","institution_ids":["https://openalex.org/I887064364"]},{"raw_affiliation_string":"TNO Physics and Electronics Laboratory, The Hague, Netherlands","institution_ids":["https://openalex.org/I148297040"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5049349937","display_name":"Ben Kr\u00f6se","orcid":"https://orcid.org/0000-0003-1237-0618"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"B. Krose","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":"2","issue":null,"first_page":"610","last_page":"613"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9646,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.55274576},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5161013},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.5077039},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.41369456}],"concepts":[{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.6221323},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.57431453},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.5688055},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.55274576},{"id":"https://openalex.org/C182081679","wikidata":"https://www.wikidata.org/wiki/Q1275153","display_name":"Expectation\u2013maximization algorithm","level":3,"score":0.54550964},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5161013},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.5077039},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.49451825},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4932949},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4729357},{"id":"https://openalex.org/C65965080","wikidata":"https://www.wikidata.org/wiki/Q1806885","display_name":"Latent variable model","level":3,"score":0.45283648},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.41369456},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.36942083},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.36127344},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.35516638},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.18567324},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.16214743},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2000.906148","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W1726174625","https://openalex.org/W1981276685","https://openalex.org/W2034948708","https://openalex.org/W2037570407","https://openalex.org/W2099954285","https://openalex.org/W2126941075","https://openalex.org/W2166698530","https://openalex.org/W2797746357"],"related_works":["https://openalex.org/W4243467573","https://openalex.org/W2963987720","https://openalex.org/W2770703741","https://openalex.org/W2750968126","https://openalex.org/W2616125534","https://openalex.org/W2461917396","https://openalex.org/W2146310005","https://openalex.org/W2037497866","https://openalex.org/W1966667550","https://openalex.org/W1502435251"],"abstract_inverted_index":{"We":[0],"introduce":[1],"a":[2,8,16,135],"way":[3],"of":[4,19,22,47,51,99,103,113,128,131,138],"modeling":[5],"distributions":[6],"with":[7],"low":[9],"latent":[10,27,70,140],"dimensionality":[11],"our":[12],"method":[13,85],"allows":[14],"for":[15,35,73,86],"strict":[17],"control":[18],"the":[20,23,26,29,45,48,52,57,63,68,88,100,104,116,125,129,132,139],"properties":[21,130],"mapping":[24,41,89,93,133],"between":[25],"and":[28,134],"feature":[30,75],"space.":[31],"Usually,":[32],"as":[33],"in":[34,62,90,111,124],"example":[36],"generative":[37],"topographic":[38],"mapping,":[39],"this":[40],"is":[42,60,78,94,108],"constructed":[43],"through":[44],"maximization":[46],"log":[49,101,114],"likelihood":[50,102,115],"data":[53,58,105],"set.":[54,106],"However,":[55],"if":[56],"set":[59],"supervised,":[61],"sense":[64],"that":[65,110],"we":[66],"know":[67],"corresponding":[69],"vector":[71],"value":[72],"each":[74],"vector;":[76],"it":[77],"more":[79],"sensible":[80],"to":[81],"use":[82],"same":[83],"regression":[84],"finding":[87],"advance.":[91],"The":[92,120],"then":[95],"fixed":[96],"during":[97],"optimization":[98],"It":[107],"concluded":[109],"terms":[112],"methods":[117],"are":[118],"comparable.":[119],"advantages":[121],"however":[122],"lie":[123],"better":[126],"understanding":[127],"clear":[136],"interpretation":[137],"variables.":[141]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2169374554","counts_by_year":[],"updated_date":"2024-12-07T01:22:55.851558","created_date":"2016-06-24"}