{"id":"https://openalex.org/W2889173716","doi":"https://doi.org/10.1109/icphm.2018.8448969","title":"Fusion of Low-level Features with Stacked Autoencoder for Condition based Monitoring of Machines","display_name":"Fusion of Low-level Features with Stacked Autoencoder for Condition based Monitoring of Machines","publication_year":2018,"publication_date":"2018-06-01","ids":{"openalex":"https://openalex.org/W2889173716","doi":"https://doi.org/10.1109/icphm.2018.8448969","mag":"2889173716"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icphm.2018.8448969","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5010024357","display_name":"Seetaram Maurya","orcid":"https://orcid.org/0000-0001-7124-9952"},"institutions":[{"id":"https://openalex.org/I94234084","display_name":"Indian Institute of Technology Kanpur","ror":"https://ror.org/05pjsgx75","country_code":"IN","type":"education","lineage":["https://openalex.org/I94234084"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Seetaram Maurya","raw_affiliation_strings":["Dept. of Electrical Engineering, IIT Kanpur, India"],"affiliations":[{"raw_affiliation_string":"Dept. of Electrical Engineering, IIT Kanpur, India","institution_ids":["https://openalex.org/I94234084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100778999","display_name":"Vikas Singh","orcid":"https://orcid.org/0000-0001-8014-6939"},"institutions":[{"id":"https://openalex.org/I94234084","display_name":"Indian Institute of Technology Kanpur","ror":"https://ror.org/05pjsgx75","country_code":"IN","type":"education","lineage":["https://openalex.org/I94234084"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Vikas Singh","raw_affiliation_strings":["Dept. of Electrical Engineering, IIT Kanpur, India"],"affiliations":[{"raw_affiliation_string":"Dept. of Electrical Engineering, IIT Kanpur, India","institution_ids":["https://openalex.org/I94234084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021035199","display_name":"Sonal Dixit","orcid":null},"institutions":[{"id":"https://openalex.org/I94234084","display_name":"Indian Institute of Technology Kanpur","ror":"https://ror.org/05pjsgx75","country_code":"IN","type":"education","lineage":["https://openalex.org/I94234084"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Sonal Dixit","raw_affiliation_strings":["Dept. of Electrical Engineering, IIT Kanpur, India"],"affiliations":[{"raw_affiliation_string":"Dept. of Electrical Engineering, IIT Kanpur, India","institution_ids":["https://openalex.org/I94234084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014147535","display_name":"Nishchal K. Verma","orcid":"https://orcid.org/0000-0001-8752-5616"},"institutions":[{"id":"https://openalex.org/I94234084","display_name":"Indian Institute of Technology Kanpur","ror":"https://ror.org/05pjsgx75","country_code":"IN","type":"education","lineage":["https://openalex.org/I94234084"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Nishchal K Verma","raw_affiliation_strings":["Dept. of Electrical Engineering, IIT Kanpur, India"],"affiliations":[{"raw_affiliation_string":"Dept. of Electrical Engineering, IIT Kanpur, India","institution_ids":["https://openalex.org/I94234084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110120418","display_name":"Al Salour","orcid":null},"institutions":[{"id":"https://openalex.org/I1295339012","display_name":"Boeing (United States)","ror":"https://ror.org/04sm5zn07","country_code":"US","type":"company","lineage":["https://openalex.org/I1295339012"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Al Salour","raw_affiliation_strings":["The Boeing Company, St. Louis, MO, USA"],"affiliations":[{"raw_affiliation_string":"The Boeing Company, St. Louis, MO, USA","institution_ids":["https://openalex.org/I1295339012"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100454017","display_name":"Jie Liu","orcid":"https://orcid.org/0000-0001-7493-0882"},"institutions":[{"id":"https://openalex.org/I67031392","display_name":"Carleton University","ror":"https://ror.org/02qtvee93","country_code":"CA","type":"education","lineage":["https://openalex.org/I67031392"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Jie Liu","raw_affiliation_strings":["Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada"],"affiliations":[{"raw_affiliation_string":"Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada","institution_ids":["https://openalex.org/I67031392"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.123,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":17,"citation_normalized_percentile":{"value":0.876971,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9863,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11372","display_name":"Hydraulic and Pneumatic Systems","score":0.9495,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.833765},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.6224492}],"concepts":[{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.833765},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72479343},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6575682},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.6478746},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.6224492},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.60053205},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.56665677},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.45873418},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.451455},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41707438},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4098301}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icphm.2018.8448969","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.73,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1539244448","https://openalex.org/W1543198777","https://openalex.org/W2007221293","https://openalex.org/W2010720210","https://openalex.org/W2021909145","https://openalex.org/W2032806448","https://openalex.org/W2047244261","https://openalex.org/W2047426693","https://openalex.org/W2062343473","https://openalex.org/W2100495367","https://openalex.org/W2100537461","https://openalex.org/W2101926813","https://openalex.org/W2108744642","https://openalex.org/W2109965063","https://openalex.org/W2119821739","https://openalex.org/W2126326837","https://openalex.org/W2146620871","https://openalex.org/W2148603752","https://openalex.org/W2153635508","https://openalex.org/W2172064003","https://openalex.org/W2290122975","https://openalex.org/W2377263780","https://openalex.org/W2524965963","https://openalex.org/W2578238698","https://openalex.org/W2578881278","https://openalex.org/W2743176011","https://openalex.org/W2744956121","https://openalex.org/W2765748210","https://openalex.org/W2771734292","https://openalex.org/W2889528295","https://openalex.org/W3630269","https://openalex.org/W4239510810"],"related_works":["https://openalex.org/W4321789545","https://openalex.org/W4297051394","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2752972570","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453","https://openalex.org/W2145836866","https://openalex.org/W1487808658"],"abstract_inverted_index":{"Effective":[0],"condition":[1,44],"based":[2,45,63,105],"monitoring":[3,46],"has":[4,143],"received":[5],"much":[6],"attention":[7],"in":[8,25,43,85],"the":[9,40,49,86,134,138],"area":[10],"of":[11,16,39,51,66,150,172],"prognosis":[12],"and":[13,27,31],"health":[14,177],"management":[15],"machines":[17],"due":[18],"to":[19,75],"its":[20],"benefit":[21],"such":[22],"as":[23,80,82,146],"improvements":[24],"reliability":[26],"security,":[28],"economical":[29],"efficiency":[30],"decreases":[32],"equipment":[33],"damage.":[34],"Feature":[35],"extraction":[36,61],"is":[37,153],"one":[38],"essential":[41],"step":[42],"which":[47],"determines":[48],"performance":[50],"diagnosis":[52],"model.":[53],"This":[54],"paper":[55],"proposes":[56],"a":[57],"novel":[58],"discriminative":[59],"feature":[60],"technique":[62],"on":[64,155],"fusion":[65],"low-level":[67],"features":[68,71,74,90,99,111,124],"or":[69],"hand-crafted":[70],"with":[72],"high-level":[73,98],"detect":[76],"every":[77],"inserted":[78],"faults":[79],"well":[81],"latent":[83],"abnormalities":[84],"machine.":[87],"Low":[88],"level":[89],"are":[91,100,120],"extracted":[92],"using":[93],"signal":[94],"processing":[95],"techniques":[96],"while":[97],"obtained":[101],"from":[102,159,168],"stacked":[103],"autoencoder":[104],"deep":[106],"neural":[107],"network.":[108],"Thus,":[109],"both":[110,119],"represent":[112],"raw":[113],"data":[114,132],"but":[115],"generation":[116],"methods":[117],"for":[118],"entirely":[121],"different.":[122],"Discriminating":[123],"build":[125],"an":[126],"effective":[127],"classifier":[128],"that":[129],"categorizes":[130],"test":[131],"into":[133],"respective":[135],"classes.":[136],"In":[137],"proposed":[139,151],"methodology":[140,152],"multi-class":[141],"SVM":[142],"been":[144,166],"used":[145],"classifier.":[147],"The":[148],"effectiveness":[149],"validated":[154],"acoustic":[156,163],"datasets":[157,164],"collected":[158],"air":[160,173],"compressor.":[161],"These":[162],"have":[165],"recorded":[167],"most":[169],"sensitive":[170],"positions":[171],"compressor":[174],"under":[175],"various":[176],"conditions.":[178]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2889173716","counts_by_year":[{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":6},{"year":2018,"cited_by_count":1}],"updated_date":"2025-01-03T12:42:52.164740","created_date":"2018-09-07"}