{"id":"https://openalex.org/W2889065589","doi":"https://doi.org/10.1109/icphm.2018.8448958","title":"Quantizing the Health State of Railway Axle Bearing via Signal-to-noise ratio defined by EEMD and SVD","display_name":"Quantizing the Health State of Railway Axle Bearing via Signal-to-noise ratio defined by EEMD and SVD","publication_year":2018,"publication_date":"2018-06-01","ids":{"openalex":"https://openalex.org/W2889065589","doi":"https://doi.org/10.1109/icphm.2018.8448958","mag":"2889065589"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icphm.2018.8448958","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100611984","display_name":"Cai Yi","orcid":"https://orcid.org/0000-0001-5641-6791"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"education","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Cai Yi","raw_affiliation_strings":["City University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"City University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I168719708"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100396549","display_name":"Lu Liu","orcid":"https://orcid.org/0000-0003-2741-2542"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"education","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lu Liu","raw_affiliation_strings":["State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071321838","display_name":"Jianhui Lin","orcid":"https://orcid.org/0000-0002-5868-9360"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"education","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jianhui Lin","raw_affiliation_strings":["State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5002878668","display_name":"Kwok\u2010Leung Tsui","orcid":"https://orcid.org/0000-0002-0558-2279"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"education","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Kwok-Leung Tsui","raw_affiliation_strings":["City University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"City University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I168719708"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.342,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.50412,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":74},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11062","display_name":"Gear and Bearing Dynamics Analysis","score":0.9837,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/condition-monitoring","display_name":"Condition Monitoring","score":0.47600684},{"id":"https://openalex.org/keywords/structural-health-monitoring","display_name":"Structural Health Monitoring","score":0.45034426},{"id":"https://openalex.org/keywords/signal","display_name":"SIGNAL (programming language)","score":0.43000758}],"concepts":[{"id":"https://openalex.org/C129727815","wikidata":"https://www.wikidata.org/wiki/Q188209","display_name":"Axle","level":2,"score":0.79371077},{"id":"https://openalex.org/C199978012","wikidata":"https://www.wikidata.org/wiki/Q1273815","display_name":"Bearing (navigation)","level":2,"score":0.738093},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.5989041},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.48677942},{"id":"https://openalex.org/C2775846686","wikidata":"https://www.wikidata.org/wiki/Q643012","display_name":"Condition monitoring","level":2,"score":0.47600684},{"id":"https://openalex.org/C2776247918","wikidata":"https://www.wikidata.org/wiki/Q1423713","display_name":"Structural health monitoring","level":2,"score":0.45034426},{"id":"https://openalex.org/C2779843651","wikidata":"https://www.wikidata.org/wiki/Q7390335","display_name":"SIGNAL (programming language)","level":2,"score":0.43000758},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4126758},{"id":"https://openalex.org/C171146098","wikidata":"https://www.wikidata.org/wiki/Q124192","display_name":"Automotive engineering","level":1,"score":0.32988548},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.31666327},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.24877957},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0933148},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icphm.2018.8448958","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1970594742","https://openalex.org/W1991941961","https://openalex.org/W2007201636","https://openalex.org/W2007221293","https://openalex.org/W2036273098","https://openalex.org/W2120390927","https://openalex.org/W2160547390","https://openalex.org/W2162741527","https://openalex.org/W2220801911","https://openalex.org/W2324298973","https://openalex.org/W2401346899","https://openalex.org/W2485614840","https://openalex.org/W2508196091","https://openalex.org/W2531288459","https://openalex.org/W2549489119","https://openalex.org/W2585519949","https://openalex.org/W2588830920","https://openalex.org/W2589138705","https://openalex.org/W2605673312","https://openalex.org/W2607759661","https://openalex.org/W4235594362","https://openalex.org/W625540141"],"related_works":["https://openalex.org/W650759427","https://openalex.org/W4387386938","https://openalex.org/W4323520306","https://openalex.org/W4312942650","https://openalex.org/W2895848775","https://openalex.org/W2335478004","https://openalex.org/W2331622280","https://openalex.org/W2142557486","https://openalex.org/W2064011721","https://openalex.org/W127377949"],"abstract_inverted_index":{"State":[0,38],"quantized":[1,95],"characterization":[2,39,96],"is":[3,16,29,40,65,102,120,141,161],"of":[4,10,67,84,149,167,177,187,193,197],"great":[5],"demand":[6],"with":[7],"the":[8,20,33,53,68,80,85,108,138,146,150,157,188],"development":[9],"automation":[11],"and":[12,28,35,56,74,82,106,127,131,179,184],"intelligent":[13],"machineries.":[14],"It":[15],"helpful":[17],"for":[18,23,31,51,60,175,191],"monitoring":[19],"operation":[21],"state":[22,77,94,148],"machines":[24],"in":[25,72,112,163],"real":[26],"time,":[27],"critical":[30],"detecting":[32],"defects":[34,201],"potential":[36],"faults.":[37],"also":[41],"a":[42,47,92,113,132],"base":[43],"rock":[44],"to":[45,104,143],"implement":[46],"state-based":[48],"maintenance":[49],"strategy":[50],"avoiding":[52],"unexpected":[54],"accidents":[55],"significant":[57],"economic":[58],"losses":[59],"multifarious":[61],"machines.":[62],"Axle":[63],"bearing":[64,111,170,181,200],"one":[66],"most":[69],"important":[70],"component":[71],"vehicle,":[73],"its":[75],"health":[76,134,147,159,182,189],"will":[78],"affect":[79],"stability":[81],"safety":[83],"whole":[86],"railway":[87,109,168,198],"system.":[88],"In":[89],"this":[90],"paper,":[91],"promising":[93],"method":[97],"based":[98,136],"on":[99,137],"signal-to-noise":[100,118,139],"ratio":[101,119,140],"proposed":[103,142,158],"monitor":[105],"detect":[107],"axle":[110,151,169,199],"high-speed":[114],"train.":[115],"The":[116],"novelty":[117],"defined":[121],"via":[122],"ensemble":[123],"empirical":[124],"mode":[125],"decomposition":[126],"singular":[128],"value":[129],"decomposition,":[130],"dimensionless":[133],"indicator":[135,160,190],"characterize":[144],"quantitatively":[145],"bearing.":[152],"Experimental":[153],"results":[154],"showed":[155],"that":[156],"effective":[162],"distinguishing":[164],"three":[165,194],"types":[166,196],"defects.":[171],"Moreover,":[172],"guideline":[173],"thresholds":[174],"classification":[176],"normal":[178],"abnormal":[180],"statuses":[183],"metrological":[185],"boundaries":[186],"identification":[192],"different":[195],"are":[202],"provided.":[203]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2889065589","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2024-12-07T14:59:33.107439","created_date":"2018-09-07"}