{"id":"https://openalex.org/W2889053167","doi":"https://doi.org/10.1109/icphm.2018.8448459","title":"A Bayesian Network Approach for Imbalanced Fault Detection in High Speed Rail Systems","display_name":"A Bayesian Network Approach for Imbalanced Fault Detection in High Speed Rail Systems","publication_year":2018,"publication_date":"2018-06-01","ids":{"openalex":"https://openalex.org/W2889053167","doi":"https://doi.org/10.1109/icphm.2018.8448459","mag":"2889053167"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icphm.2018.8448459","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031762854","display_name":"Yan\u2010Fu Li","orcid":"https://orcid.org/0000-0001-5755-7115"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yan-Fu Li","raw_affiliation_strings":["Department of Industrial Engineering, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Industrial Engineering, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100454179","display_name":"Jie Liu","orcid":"https://orcid.org/0000-0003-0895-7598"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jie Liu","raw_affiliation_strings":["School of Reliability and System Enginnering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Reliability and System Enginnering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.15,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.577293,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9839,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9839,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9655,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":0.9214,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/dynamic-bayesian-network","display_name":"Dynamic Bayesian network","score":0.48178622}],"concepts":[{"id":"https://openalex.org/C190839683","wikidata":"https://www.wikidata.org/wiki/Q2448197","display_name":"Train","level":2,"score":0.6785394},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.6567017},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6489136},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.6432634},{"id":"https://openalex.org/C33724603","wikidata":"https://www.wikidata.org/wiki/Q812540","display_name":"Bayesian network","level":2,"score":0.63658106},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.58182293},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.54843897},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.545825},{"id":"https://openalex.org/C21200559","wikidata":"https://www.wikidata.org/wiki/Q7451068","display_name":"Sensitivity (control systems)","level":2,"score":0.5184817},{"id":"https://openalex.org/C82142266","wikidata":"https://www.wikidata.org/wiki/Q3456604","display_name":"Dynamic Bayesian network","level":3,"score":0.48178622},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.47062448},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.46799108},{"id":"https://openalex.org/C175551986","wikidata":"https://www.wikidata.org/wiki/Q47089","display_name":"Fault (geology)","level":2,"score":0.432896},{"id":"https://openalex.org/C152745839","wikidata":"https://www.wikidata.org/wiki/Q5438153","display_name":"Fault detection and isolation","level":3,"score":0.421197},{"id":"https://openalex.org/C200601418","wikidata":"https://www.wikidata.org/wiki/Q2193887","display_name":"Reliability engineering","level":1,"score":0.33478183},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3171245},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.2259723},{"id":"https://openalex.org/C165205528","wikidata":"https://www.wikidata.org/wiki/Q83371","display_name":"Seismology","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0},{"id":"https://openalex.org/C172707124","wikidata":"https://www.wikidata.org/wiki/Q423488","display_name":"Actuator","level":2,"score":0.0},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C24326235","wikidata":"https://www.wikidata.org/wiki/Q126095","display_name":"Electronic engineering","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icphm.2018.8448459","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1556507321","https://openalex.org/W1642248920","https://openalex.org/W1696243063","https://openalex.org/W1864680547","https://openalex.org/W1975408481","https://openalex.org/W1975687896","https://openalex.org/W1981665800","https://openalex.org/W1983431696","https://openalex.org/W1995689753","https://openalex.org/W2005934359","https://openalex.org/W2006252838","https://openalex.org/W2017337590","https://openalex.org/W2018316429","https://openalex.org/W2025992121","https://openalex.org/W2028166238","https://openalex.org/W2031053832","https://openalex.org/W2049571606","https://openalex.org/W2056425547","https://openalex.org/W2068509236","https://openalex.org/W2077170301","https://openalex.org/W2088575019","https://openalex.org/W2118815935","https://openalex.org/W2124165797","https://openalex.org/W2133462743","https://openalex.org/W2143075689","https://openalex.org/W2144213317","https://openalex.org/W2159111290","https://openalex.org/W2164351502","https://openalex.org/W2166559705","https://openalex.org/W2167596378","https://openalex.org/W2342813089","https://openalex.org/W2343375316","https://openalex.org/W2410001329","https://openalex.org/W2555835967","https://openalex.org/W2998216295","https://openalex.org/W3103913776","https://openalex.org/W4285719527","https://openalex.org/W46659105"],"related_works":["https://openalex.org/W618248309","https://openalex.org/W2578973671","https://openalex.org/W2511198839","https://openalex.org/W2413421635","https://openalex.org/W2377336366","https://openalex.org/W2366931106","https://openalex.org/W2215058820","https://openalex.org/W2097663773","https://openalex.org/W1966557338","https://openalex.org/W1602184117"],"abstract_inverted_index":{"Safety":[0],"and":[1,26,33,38,108],"reliability":[2],"of":[3,29,58,91,98,111],"High":[4],"Speed":[5],"Trains":[6],"(HSTs)":[7],"are":[8,22,31],"crucial":[9],"factors":[10],"for":[11,35,51,83,87],"their":[12],"development":[13],"as":[14],"mass":[15],"transport":[16],"means.":[17],"For":[18],"this":[19,41],"reason,":[20],"they":[21],"highly":[23],"monitored":[24],"systems,":[25],"large":[27],"amounts":[28],"data":[30,50,100],"collected":[32],"used":[34],"efficient":[36],"operation":[37],"maintenance.":[39],"In":[40],"paper,":[42],"we":[43],"focus":[44],"on":[45,67],"extracting":[46],"knowledge":[47],"from":[48],"these":[49],"fault":[52],"detection":[53],"in":[54],"the":[55,84,89,92,99,112,120],"braking":[56],"system":[57],"HSTs.":[59],"A":[60,73],"probabilistic,":[61],"explainable":[62],"framework":[63],"is":[64,79,114,123],"proposed,":[65],"based":[66],"an":[68],"objective-oriented":[69],"Bayesian":[70],"Network":[71],"(BN).":[72],"symmetric":[74],"uncertainty-based":[75],"feature":[76],"selection":[77],"method":[78,113],"combined":[80],"with":[81],"BN,":[82],"first":[85],"time,":[86],"reducing":[88],"dimensionality":[90],"original":[93],"data.":[94],"The":[95],"imbalance":[96],"ratio":[97],"can":[101],"be":[102],"up":[103],"to":[104],"more":[105,124],"than":[106,126],"300":[107],"sensitivity":[109],"analysis":[110],"performed.":[115],"Experiment":[116],"results":[117],"show":[118],"that":[119],"proposed":[121],"approach":[122],"accurate":[125],"published":[127],"method.":[128]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2889053167","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2025-01-06T18:36:53.782222","created_date":"2018-09-07"}