{"id":"https://openalex.org/W2744612526","doi":"https://doi.org/10.1109/icphm.2017.7998338","title":"Research on electric vehicle (EV) driving range prediction method based on PSO-LSSVM","display_name":"Research on electric vehicle (EV) driving range prediction method based on PSO-LSSVM","publication_year":2017,"publication_date":"2017-06-01","ids":{"openalex":"https://openalex.org/W2744612526","doi":"https://doi.org/10.1109/icphm.2017.7998338","mag":"2744612526"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icphm.2017.7998338","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5029221427","display_name":"Zhuo Wang","orcid":"https://orcid.org/0000-0002-2735-6969"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhuo Wang","raw_affiliation_strings":["School of Reliability and System Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Reliability and System Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100455445","display_name":"Xiaohong Wang","orcid":"https://orcid.org/0000-0002-1540-6674"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiao-Hong Wang","raw_affiliation_strings":["School of Reliability and System Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Reliability and System Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100666777","display_name":"Lizhi Wang","orcid":"https://orcid.org/0000-0001-6663-0265"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Li-Zhi Wang","raw_affiliation_strings":["School of Reliability and System Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Reliability and System Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047958834","display_name":"Xiao-Fen Hu","orcid":null},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiao-Fen Hu","raw_affiliation_strings":["School of Reliability and System Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Reliability and System Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5110471584","display_name":"Wenhui Fan","orcid":null},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wen-Hui Fan","raw_affiliation_strings":["School of Reliability and System Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Reliability and System Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.45,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":10,"citation_normalized_percentile":{"value":0.707787,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":null,"issue":null,"first_page":"260","last_page":"265"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10663","display_name":"Advanced Battery Technologies Research","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10663","display_name":"Advanced Battery Technologies Research","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10768","display_name":"Electric Vehicles and Infrastructure","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12095","display_name":"Vehicle emissions and performance","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C85617194","wikidata":"https://www.wikidata.org/wiki/Q2072794","display_name":"Particle swarm optimization","level":2,"score":0.7803086},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.6928271},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.53566206},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.5189654},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.50833625},{"id":"https://openalex.org/C2776422217","wikidata":"https://www.wikidata.org/wiki/Q13629441","display_name":"Electric vehicle","level":3,"score":0.49207157},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4838792},{"id":"https://openalex.org/C112972136","wikidata":"https://www.wikidata.org/wiki/Q7595718","display_name":"Stability (learning theory)","level":2,"score":0.45150858},{"id":"https://openalex.org/C171146098","wikidata":"https://www.wikidata.org/wiki/Q124192","display_name":"Automotive engineering","level":1,"score":0.34579965},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33752227},{"id":"https://openalex.org/C44154836","wikidata":"https://www.wikidata.org/wiki/Q45045","display_name":"Simulation","level":1,"score":0.3247097},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3208456},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.28489494},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18937579},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.07684526},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.073292404},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icphm.2017.7998338","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","score":0.61,"id":"https://metadata.un.org/sdg/7"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1458733518","https://openalex.org/W1596717185","https://openalex.org/W1996062600","https://openalex.org/W2027872902","https://openalex.org/W2045317586","https://openalex.org/W2054675725","https://openalex.org/W2057472606","https://openalex.org/W2057814586","https://openalex.org/W2087754676","https://openalex.org/W2106176713","https://openalex.org/W2106488883","https://openalex.org/W2129317318","https://openalex.org/W2150199594","https://openalex.org/W2152195021","https://openalex.org/W2157906137","https://openalex.org/W2253735108","https://openalex.org/W2276751812","https://openalex.org/W2410644873","https://openalex.org/W2413581040","https://openalex.org/W2462241752"],"related_works":["https://openalex.org/W43109613","https://openalex.org/W3162204513","https://openalex.org/W2381411913","https://openalex.org/W2371138613","https://openalex.org/W2359952343","https://openalex.org/W2239445980","https://openalex.org/W2104657898","https://openalex.org/W2090763504","https://openalex.org/W2048963458","https://openalex.org/W148178222"],"abstract_inverted_index":{"Electric":[0],"vehicle":[1],"(EV)":[2],"driving":[3,98,144,167],"range":[4],"directly":[5,76],"reflects":[6],"EVs'":[7,161],"performance,":[8],"safety,":[9],"reliability":[10],"and":[11,31,58,112,118,123,137,158,164],"economy.":[12],"EV":[13,97,143],"has":[14,132],"gained":[15],"wide":[16],"attention":[17],"in":[18],"recent":[19],"years.":[20],"However,":[21],"most":[22],"of":[23,84,87,103,115],"researches":[24],"are":[25,90],"carried":[26],"out":[27],"under":[28],"ideal":[29],"conditions":[30,163],"the":[32,101,130,147,166],"existing":[33],"methods":[34],"have":[35],"numerous":[36],"drawbacks.":[37],"This":[38],"paper":[39],"presents":[40],"a":[41,47,133,152],"novel":[42],"prediction":[43],"method":[44],"based":[45],"on":[46],"least":[48],"squares":[49],"support":[50],"vector":[51],"machine":[52],"(LSSVM)":[53],"model":[54,94,105,131],"with":[55],"parameters":[56,71,110],"\u03b3":[57],"\u03c3":[59],"2":[62],"optimized":[63],"by":[64,77,108],"particle":[65],"swarm":[66],"optimization":[67],"(PSO).":[68],"The":[69,126],"main":[70],"which":[72],"cannot":[73],"be":[74],"obtained":[75],"drivers":[78,155],"such":[79],"as":[80],"days,":[81],"temperature,":[82],"depth":[83],"discharge":[85],"(DOD)":[86],"battery":[88],"pack":[89],"used":[91],"for":[92,154],"training":[93,116],"to":[95,141,156],"predict":[96,142,165],"range.":[99,145,168],"Furthermore,":[100],"performance":[102,140],"PSO-LSSVM":[104],"is":[106,121],"illustrated":[107],"statistical":[109],"(RE":[111],"AARE).":[113],"AARE":[114],"data":[117,120],"testing":[119],"1.99%":[122],"5.99%":[124],"respectively.":[125],"results":[127,148],"suggest":[128],"that":[129],"stability,":[134],"generalization":[135],"ability":[136],"reliable":[138],"predictive":[139],"Meanwhile,":[146],"can":[149],"also":[150],"provide":[151],"guidance":[153],"grasp":[157],"manage":[159],"their":[160],"health":[162]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2744612526","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":3},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1}],"updated_date":"2025-01-06T12:19:21.022570","created_date":"2017-08-17"}