{"id":"https://openalex.org/W2744067593","doi":"https://doi.org/10.1109/icphm.2017.7998311","title":"Long Short-Term Memory Network for Remaining Useful Life estimation","display_name":"Long Short-Term Memory Network for Remaining Useful Life estimation","publication_year":2017,"publication_date":"2017-06-01","ids":{"openalex":"https://openalex.org/W2744067593","doi":"https://doi.org/10.1109/icphm.2017.7998311","mag":"2744067593"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icphm.2017.7998311","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100726971","display_name":"Shuai Zheng","orcid":"https://orcid.org/0000-0001-9006-6318"},"institutions":[{"id":"https://openalex.org/I189196454","display_name":"The University of Texas at Arlington","ror":"https://ror.org/019kgqr73","country_code":"US","type":"education","lineage":["https://openalex.org/I189196454"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shuai Zheng","raw_affiliation_strings":["Department of CSE, University of Texas, Arlington, TX"],"affiliations":[{"raw_affiliation_string":"Department of CSE, University of Texas, Arlington, TX","institution_ids":["https://openalex.org/I189196454"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046783666","display_name":"Kosta Ristovski","orcid":null},"institutions":[{"id":"https://openalex.org/I86725329","display_name":"Hitachi Global Storage Technologies (United States)","ror":"https://ror.org/02q0s1x22","country_code":"US","type":"company","lineage":["https://openalex.org/I86725329"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kosta Ristovski","raw_affiliation_strings":["Big Data Laboratory, Hitachi America Ltd., Santa Clara, CA"],"affiliations":[{"raw_affiliation_string":"Big Data Laboratory, Hitachi America Ltd., Santa Clara, CA","institution_ids":["https://openalex.org/I86725329"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013166935","display_name":"Ahmed Farahat","orcid":"https://orcid.org/0000-0002-9828-8051"},"institutions":[{"id":"https://openalex.org/I86725329","display_name":"Hitachi Global Storage Technologies (United States)","ror":"https://ror.org/02q0s1x22","country_code":"US","type":"company","lineage":["https://openalex.org/I86725329"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ahmed Farahat","raw_affiliation_strings":["Big Data Laboratory, Hitachi America Ltd., Santa Clara, CA"],"affiliations":[{"raw_affiliation_string":"Big Data Laboratory, Hitachi America Ltd., Santa Clara, CA","institution_ids":["https://openalex.org/I86725329"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5103731588","display_name":"Chetan Gupta","orcid":null},"institutions":[{"id":"https://openalex.org/I86725329","display_name":"Hitachi Global Storage Technologies (United States)","ror":"https://ror.org/02q0s1x22","country_code":"US","type":"company","lineage":["https://openalex.org/I86725329"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chetan Gupta","raw_affiliation_strings":["Big Data Laboratory, Hitachi America Ltd., Santa Clara, CA"],"affiliations":[{"raw_affiliation_string":"Big Data Laboratory, Hitachi America Ltd., Santa Clara, CA","institution_ids":["https://openalex.org/I86725329"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":101.604,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":648,"citation_normalized_percentile":{"value":0.965572,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":"88","last_page":"95"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10780","display_name":"Reliability and Maintenance Optimization","score":0.9924,"subfield":{"id":"https://openalex.org/subfields/2213","display_name":"Safety, Risk, Reliability and Quality"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10780","display_name":"Reliability and Maintenance Optimization","score":0.9924,"subfield":{"id":"https://openalex.org/subfields/2213","display_name":"Safety, Risk, Reliability and Quality"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13690","display_name":"Quality and Safety in Healthcare","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/3607","display_name":"Medical Laboratory Technology"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/prognostics","display_name":"Prognostics","score":0.9239943},{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.63381785},{"id":"https://openalex.org/keywords/condition-monitoring","display_name":"Condition Monitoring","score":0.41822952}],"concepts":[{"id":"https://openalex.org/C129364497","wikidata":"https://www.wikidata.org/wiki/Q3042561","display_name":"Prognostics","level":2,"score":0.9239943},{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.79664886},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6757694},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.63381785},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.57368886},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.57245016},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5181181},{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.50461733},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.49309704},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.47908145},{"id":"https://openalex.org/C175551986","wikidata":"https://www.wikidata.org/wiki/Q47089","display_name":"Fault (geology)","level":2,"score":0.47641742},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.47158515},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.44720873},{"id":"https://openalex.org/C2775846686","wikidata":"https://www.wikidata.org/wiki/Q643012","display_name":"Condition monitoring","level":2,"score":0.41822952},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.41591924},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.21386129},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C165205528","wikidata":"https://www.wikidata.org/wiki/Q83371","display_name":"Seismology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icphm.2017.7998311","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W159252758","https://openalex.org/W1978965153","https://openalex.org/W2055873761","https://openalex.org/W2064675550","https://openalex.org/W2086021758","https://openalex.org/W2094166892","https://openalex.org/W2107878631","https://openalex.org/W2110485445","https://openalex.org/W2110787940","https://openalex.org/W2117561657","https://openalex.org/W213042921","https://openalex.org/W2136922672","https://openalex.org/W2139177900","https://openalex.org/W2167525444","https://openalex.org/W2415594836","https://openalex.org/W2532523702","https://openalex.org/W281016700","https://openalex.org/W2964090591","https://openalex.org/W3033830825","https://openalex.org/W4254816979","https://openalex.org/W4285719527","https://openalex.org/W4298255286","https://openalex.org/W4303633609","https://openalex.org/W53502161"],"related_works":["https://openalex.org/W3000986292","https://openalex.org/W2908973203","https://openalex.org/W2801712269","https://openalex.org/W2568310397","https://openalex.org/W2310476526","https://openalex.org/W2156691445","https://openalex.org/W2123638926","https://openalex.org/W2045186954","https://openalex.org/W1872896676","https://openalex.org/W1502469213"],"abstract_inverted_index":{"Remaining":[0],"Useful":[1],"Life":[2],"(RUL)":[3],"of":[4,22,149],"a":[5,8,30,135],"component":[6],"or":[7],"system":[9],"is":[10,76],"defined":[11],"as":[12,87,194,196],"the":[13,16,20,23,121,150],"length":[14],"from":[15,67],"current":[17],"time":[18],"to":[19,50,70,106,113],"end":[21],"useful":[24],"life.":[25],"Accurate":[26],"RUL":[27,42,142,185,192],"estimation":[28,43,186,193],"plays":[29],"critical":[31],"role":[32],"in":[33,80,120],"Prognostics":[34,175],"and":[35,47,57,92,110,154,166,176],"Health":[36,177],"Management(PHM).":[37],"Data":[38],"driven":[39],"approaches":[40,56,190],"for":[41,141,184,191],"use":[44,64,148],"sensor":[45,151,159],"data":[46,49,160,179],"operational":[48],"estimate":[51],"RUL.":[52],"Traditional":[53],"regression":[54],"based":[55],"recent":[58],"Convolutional":[59,197],"Neural":[60,94,198],"Network":[61,199],"(CNN)":[62],"approach":[63,140],"features":[65],"created":[66],"sliding":[68],"windows":[69],"build":[71],"models.":[72,168],"However,":[73],"sequence":[74,101,152],"information":[75,153],"not":[77],"fully":[78],"considered":[79],"these":[81],"approaches.":[82],"Sequence":[83],"learning":[84],"models":[85],"such":[86],"Hidden":[88],"Markov":[89],"Models":[90],"(HMMs)":[91],"Recurrent":[93],"Networks":[95],"(RNNs)":[96],"have":[97,114,125],"flaws":[98],"when":[99,116],"modeling":[100,117],"information.":[102],"HMMs":[103],"are":[104,111],"limited":[105],"discrete":[107],"hidden":[108,156],"states":[109],"known":[112],"issues":[115,126],"long-term":[118,128],"dependencies":[119],"data.":[122],"RNNs":[123],"also":[124],"with":[127,161],"dependencies.":[129],"In":[130],"this":[131],"work,":[132],"we":[133],"propose":[134],"Long":[136],"Short-Term":[137],"Memory":[138],"(LSTM)":[139],"estimation,":[143],"which":[144],"can":[145],"make":[146],"full":[147],"expose":[155],"patterns":[157],"within":[158],"multiple":[162],"operating":[163],"conditions,":[164],"fault":[165],"degradation":[167],"Extensive":[169],"experiments":[170],"using":[171],"three":[172],"widely":[173],"adopted":[174],"Management":[178],"sets":[180],"show":[181],"that":[182],"LSTM":[183],"significantly":[187],"outperforms":[188],"traditional":[189],"well":[195],"(CNN).":[200]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2744067593","counts_by_year":[{"year":2024,"cited_by_count":81},{"year":2023,"cited_by_count":119},{"year":2022,"cited_by_count":122},{"year":2021,"cited_by_count":132},{"year":2020,"cited_by_count":99},{"year":2019,"cited_by_count":73},{"year":2018,"cited_by_count":22}],"updated_date":"2025-01-02T01:44:17.614091","created_date":"2017-08-17"}