{"id":"https://openalex.org/W2742338241","doi":"https://doi.org/10.1109/icphm.2017.7998299","title":"Prognostics of Lithium ion battery using functional principal component analysis","display_name":"Prognostics of Lithium ion battery using functional principal component analysis","publication_year":2017,"publication_date":"2017-06-01","ids":{"openalex":"https://openalex.org/W2742338241","doi":"https://doi.org/10.1109/icphm.2017.7998299","mag":"2742338241"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icphm.2017.7998299","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5054291191","display_name":"Jian Guo","orcid":"https://orcid.org/0000-0003-4099-6298"},"institutions":[{"id":"https://openalex.org/I19833938","display_name":"Western New England University","ror":"https://ror.org/007cnf143","country_code":"US","type":"education","lineage":["https://openalex.org/I19833938"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jian Guo","raw_affiliation_strings":["Department of Industrial Engineering and Engineering Management, Western New England University, Springfield, MA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Industrial Engineering and Engineering Management, Western New England University, Springfield, MA, USA","institution_ids":["https://openalex.org/I19833938"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100696183","display_name":"Zhaojun Li","orcid":"https://orcid.org/0000-0002-2673-9909"},"institutions":[{"id":"https://openalex.org/I19833938","display_name":"Western New England University","ror":"https://ror.org/007cnf143","country_code":"US","type":"education","lineage":["https://openalex.org/I19833938"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhaojun Li","raw_affiliation_strings":["Department of Industrial Engineering and Engineering Management, Western New England University, Springfield, MA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Industrial Engineering and Engineering Management, Western New England University, Springfield, MA, USA","institution_ids":["https://openalex.org/I19833938"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.901,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":10,"citation_normalized_percentile":{"value":0.823508,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":null,"issue":null,"first_page":"14","last_page":"17"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10663","display_name":"Advanced Battery Technologies Research","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10663","display_name":"Advanced Battery Technologies Research","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10780","display_name":"Reliability and Maintenance Optimization","score":0.994,"subfield":{"id":"https://openalex.org/subfields/2213","display_name":"Safety, Risk, Reliability and Quality"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10018","display_name":"Advancements in Battery Materials","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/prognostics","display_name":"Prognostics","score":0.9311212},{"id":"https://openalex.org/keywords/smoothing","display_name":"Smoothing","score":0.55575734},{"id":"https://openalex.org/keywords/eigenfunction","display_name":"Eigenfunction","score":0.483818}],"concepts":[{"id":"https://openalex.org/C129364497","wikidata":"https://www.wikidata.org/wiki/Q3042561","display_name":"Prognostics","level":2,"score":0.9311212},{"id":"https://openalex.org/C71176878","wikidata":"https://www.wikidata.org/wiki/Q17014987","display_name":"Functional principal component analysis","level":3,"score":0.79955685},{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.6821882},{"id":"https://openalex.org/C3770464","wikidata":"https://www.wikidata.org/wiki/Q775963","display_name":"Smoothing","level":2,"score":0.55575734},{"id":"https://openalex.org/C128803854","wikidata":"https://www.wikidata.org/wiki/Q1307821","display_name":"Eigenfunction","level":3,"score":0.483818},{"id":"https://openalex.org/C555008776","wikidata":"https://www.wikidata.org/wiki/Q267298","display_name":"Battery (electricity)","level":3,"score":0.48154762},{"id":"https://openalex.org/C178650346","wikidata":"https://www.wikidata.org/wiki/Q201984","display_name":"Covariance","level":2,"score":0.46501452},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.41300496},{"id":"https://openalex.org/C47446073","wikidata":"https://www.wikidata.org/wiki/Q5165890","display_name":"Control theory (sociology)","level":3,"score":0.34056166},{"id":"https://openalex.org/C200601418","wikidata":"https://www.wikidata.org/wiki/Q2193887","display_name":"Reliability engineering","level":1,"score":0.3266405},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3169192},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.29845327},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.24760279},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.16776904},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.12815067},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.07992789},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C2775924081","wikidata":"https://www.wikidata.org/wiki/Q55608371","display_name":"Control (management)","level":2,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icphm.2017.7998299","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy","score":0.89}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1957998578","https://openalex.org/W1972985055","https://openalex.org/W1998803278","https://openalex.org/W2019221735","https://openalex.org/W2021615999","https://openalex.org/W2037195735","https://openalex.org/W2055942136","https://openalex.org/W2061345505","https://openalex.org/W2067233867","https://openalex.org/W2071280205","https://openalex.org/W2088924893","https://openalex.org/W2094443080","https://openalex.org/W2125979918","https://openalex.org/W2127342270","https://openalex.org/W2144148350","https://openalex.org/W2146560932","https://openalex.org/W2147428031","https://openalex.org/W2152291914","https://openalex.org/W2152458971","https://openalex.org/W2169873492","https://openalex.org/W2170977282","https://openalex.org/W2188052638","https://openalex.org/W2340971382","https://openalex.org/W2963169726","https://openalex.org/W3021971632","https://openalex.org/W4285719527","https://openalex.org/W4293747882","https://openalex.org/W4293859060","https://openalex.org/W625912296"],"related_works":["https://openalex.org/W655033734","https://openalex.org/W4386567722","https://openalex.org/W3213192587","https://openalex.org/W2535730979","https://openalex.org/W2466930957","https://openalex.org/W2370073012","https://openalex.org/W2310476526","https://openalex.org/W2168646784","https://openalex.org/W2144291498","https://openalex.org/W2030958945"],"abstract_inverted_index":{"Lithium":[0],"ion":[1,57],"batteries":[2,58],"are":[3,35,98,105,135],"widely":[4],"used":[5,85],"for":[6,53],"energy":[7],"storage.":[8],"Its":[9],"capacity":[10,23,118],"degradation":[11,40,68],"modeling":[12],"and":[13,42,76,100,108,130,138],"cycle":[14,44,131],"to":[15,37,45,86,132],"failure":[16,46,133],"estimation":[17],"has":[18],"become":[19],"very":[20],"significant.":[21],"Repeated":[22],"measurements":[24],"over":[25],"the":[26,32,39,43,61,73,88,95,116,125,142],"whole":[27],"life":[28],"of":[29,55,94,113,124],"batteries,":[30],"i.e.,":[31],"longitudinal":[33],"data,":[34],"investigated":[36],"understand":[38],"process":[41],"behavior.":[47],"This":[48],"paper":[49],"proposes":[50],"a":[51,111],"method":[52,83],"prognostics":[54],"lithium":[56],"based":[59,140],"on":[60,141],"functional":[62],"principal":[63,92],"component":[64],"analysis.":[65],"The":[66,79],"observed":[67],"signal":[69],"is":[70,84],"decomposed":[71],"into":[72],"mean":[74,89],"function":[75,97],"variance-covariance":[77,96],"function.":[78,90],"local":[80],"quadratic":[81],"smoothing":[82],"estimate":[87],"Functional":[91],"components":[93],"represented":[99],"modeled":[101],"through":[102],"eigenfunctions,":[103],"which":[104],"further":[106],"approximated":[107],"estimated":[109],"using":[110],"combination":[112],"B-Splines.":[114],"For":[115],"battery":[117],"prognostics,":[119],"three":[120],"eigenfunctions":[121],"explained":[122],"99.98%":[123],"total":[126],"variation.":[127],"Capacity":[128],"prediction":[129],"distribution":[134],"also":[136],"analyzed":[137],"evaluated":[139],"proposed":[143],"method.":[144]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2742338241","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2}],"updated_date":"2025-01-05T23:38:48.844847","created_date":"2017-08-17"}