{"id":"https://openalex.org/W3126412799","doi":"https://doi.org/10.1109/icoin50884.2021.9333914","title":"Convolutional Neural Networks based on Random Kernels in the Frequency Domain","display_name":"Convolutional Neural Networks based on Random Kernels in the Frequency Domain","publication_year":2021,"publication_date":"2021-01-13","ids":{"openalex":"https://openalex.org/W3126412799","doi":"https://doi.org/10.1109/icoin50884.2021.9333914","mag":"3126412799"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icoin50884.2021.9333914","pdf_url":null,"source":{"id":"https://openalex.org/S4363608592","display_name":"2022 International Conference on Information Networking (ICOIN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5079850237","display_name":"Yuna Han","orcid":null},"institutions":[{"id":"https://openalex.org/I67900169","display_name":"Chung-Ang University","ror":"https://ror.org/01r024a98","country_code":"KR","type":"funder","lineage":["https://openalex.org/I67900169"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Yuna Han","raw_affiliation_strings":["Chung-Ang University,Computer Science Department,Seoul,Korea"],"affiliations":[{"raw_affiliation_string":"Chung-Ang University,Computer Science Department,Seoul,Korea","institution_ids":["https://openalex.org/I67900169"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052724735","display_name":"Bilel Derbel","orcid":"https://orcid.org/0000-0002-4156-8490"},"institutions":[{"id":"https://openalex.org/I2279609970","display_name":"Universit\u00e9 de Lille","ror":"https://ror.org/02kzqn938","country_code":"FR","type":"funder","lineage":["https://openalex.org/I2279609970"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Bilel Derbel","raw_affiliation_strings":["University of Lille, Lille, France"],"affiliations":[{"raw_affiliation_string":"University of Lille, Lille, France","institution_ids":["https://openalex.org/I2279609970"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5065943331","display_name":"Byung\u2010Woo Hong","orcid":"https://orcid.org/0000-0003-2752-3939"},"institutions":[{"id":"https://openalex.org/I67900169","display_name":"Chung-Ang University","ror":"https://ror.org/01r024a98","country_code":"KR","type":"funder","lineage":["https://openalex.org/I67900169"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Byung-Woo Hong","raw_affiliation_strings":["Chung-Ang University,Computer Science Department,Seoul,Korea"],"affiliations":[{"raw_affiliation_string":"Chung-Ang University,Computer Science Department,Seoul,Korea","institution_ids":["https://openalex.org/I67900169"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.571879,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":56,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"671","last_page":"673"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9957,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.7577137},{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.71149826},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.5154584},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.41934025}],"concepts":[{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.7577137},{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.71149826},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.66680175},{"id":"https://openalex.org/C19118579","wikidata":"https://www.wikidata.org/wiki/Q786423","display_name":"Frequency domain","level":2,"score":0.63213825},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6239485},{"id":"https://openalex.org/C102519508","wikidata":"https://www.wikidata.org/wiki/Q6520159","display_name":"Fourier transform","level":2,"score":0.5474291},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5404907},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.5154584},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4711693},{"id":"https://openalex.org/C75172450","wikidata":"https://www.wikidata.org/wiki/Q623950","display_name":"Fast Fourier transform","level":2,"score":0.43091288},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.41934025},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.39469802},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.27734625},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24767545},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.14296627},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icoin50884.2021.9333914","pdf_url":null,"source":{"id":"https://openalex.org/S4363608592","display_name":"2022 International Conference on Information Networking (ICOIN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://inria.hal.science/hal-03334099","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://hal.inria.fr/hal-03334099","pdf_url":null,"source":{"id":"https://openalex.org/S4306402512","display_name":"HAL (Le Centre pour la Communication Scientifique Directe)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1294671590","host_organization_name":"Centre National de la Recherche Scientifique","host_organization_lineage":["https://openalex.org/I1294671590"],"host_organization_lineage_names":["Centre National de la Recherche Scientifique"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W1839118408","https://openalex.org/W1994530392","https://openalex.org/W2150409012","https://openalex.org/W2626112510","https://openalex.org/W2777685882","https://openalex.org/W2963840672","https://openalex.org/W3036263410","https://openalex.org/W3196957369"],"related_works":["https://openalex.org/W4390971171","https://openalex.org/W4386858688","https://openalex.org/W4386603768","https://openalex.org/W4385338604","https://openalex.org/W4380302312","https://openalex.org/W3081626085","https://openalex.org/W3034421924","https://openalex.org/W2982536526","https://openalex.org/W2950475743","https://openalex.org/W2886711096"],"abstract_inverted_index":{"Image":[0],"classification":[1],"in":[2,46,61,113,121],"Fourier":[3,25,63,89],"domain":[4,64],"has":[5,30],"been":[6],"researched":[7],"for":[8,16,38,154],"many":[9,111],"years":[10],"via":[11],"deep":[12],"learning":[13],"process,":[14],"especially":[15],"spectral":[17],"pooling":[18],"methods":[19],"and":[20,28,106],"visualization.":[21],"Point-wise":[22],"multiplication":[23],"of":[24,71,79,141],"transformed":[26],"image":[27],"kernel":[29,59,101,114],"solved":[31],"high":[32,107],"computational":[33,72],"cost":[34,73,119],"which":[35,137],"is":[36,51],"required":[37],"convolution":[39],"operation":[40],"through":[41],"Convolutional":[42],"Neural":[43],"Network":[44],"(CNNs)":[45],"spatial":[47],"domain.":[48,124],"However,":[49],"there":[50],"still":[52],"an":[53,86],"open":[54],"problem":[55],"to":[56,116],"deal":[57],"with":[58],"method":[60],"the":[62,76,98,117,122,130,139,149,155],"because":[65],"larger":[66],"images":[67],"need":[68],"bigger":[69],"amount":[70],"by":[74],"using":[75,92,129,134],"same":[77],"size":[78],"kernel.":[80,95],"In":[81],"this":[82,142],"work,":[83,143],"we":[84,96,145],"propose":[85],"efficient":[87],"discrete":[88],"transform-based":[90],"CNNs":[91],"sparse":[93,99],"random":[94,100],"expect":[97,147],"contains":[102],"critical":[103],"low":[104],"frequency":[105,108],"contents,":[109],"but":[110],"zeros":[112],"affect":[115],"lower":[118],"computation":[120],"Frequency":[123],"The":[125],"evaluation":[126],"was":[127],"conducted":[128],"benchmark":[131],"MNIST":[132],"datasets":[133],"LeNet-5":[135],"(LeCun)":[136],"showed":[138],"possibility":[140],"so":[144],"can":[146,151],"that":[148],"implementation":[150],"be":[152],"expanded":[153],"future":[156],"work.":[157]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3126412799","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-17T10:51:17.741769","created_date":"2021-02-15"}