{"id":"https://openalex.org/W1601676851","doi":"https://doi.org/10.1109/icnn.1995.487817","title":"Optimized constraint satisfaction neural network for medical image segmentation","display_name":"Optimized constraint satisfaction neural network for medical image segmentation","publication_year":2002,"publication_date":"2002-11-19","ids":{"openalex":"https://openalex.org/W1601676851","doi":"https://doi.org/10.1109/icnn.1995.487817","mag":"1601676851"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icnn.1995.487817","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5024020375","display_name":"J. Dinesh Peter","orcid":null},"institutions":[{"id":"https://openalex.org/I78650965","display_name":"TU Dresden","ror":"https://ror.org/042aqky30","country_code":"DE","type":"education","lineage":["https://openalex.org/I78650965"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"J. Peter","raw_affiliation_strings":["Dept. of Electr. Eng., Tech. Univ. Dresden, Germany"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. Eng., Tech. Univ. Dresden, Germany","institution_ids":["https://openalex.org/I78650965"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100768460","display_name":"Tobias M\u00fcller","orcid":"https://orcid.org/0000-0003-1705-4366"},"institutions":[{"id":"https://openalex.org/I78650965","display_name":"TU Dresden","ror":"https://ror.org/042aqky30","country_code":"DE","type":"education","lineage":["https://openalex.org/I78650965"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"T. Muller","raw_affiliation_strings":["Dept. of Electr. Eng., Tech. Univ. Dresden, Germany"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. Eng., Tech. Univ. Dresden, Germany","institution_ids":["https://openalex.org/I78650965"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5054750944","display_name":"Richard Freyer","orcid":null},"institutions":[{"id":"https://openalex.org/I78650965","display_name":"TU Dresden","ror":"https://ror.org/042aqky30","country_code":"DE","type":"education","lineage":["https://openalex.org/I78650965"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"R. Freyer","raw_affiliation_strings":["Dept. of Electr. Eng., Tech. Univ. Dresden, Germany"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. Eng., Tech. Univ. Dresden, Germany","institution_ids":["https://openalex.org/I78650965"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9878,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9785,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/initialization","display_name":"Initialization","score":0.63469017},{"id":"https://openalex.org/keywords/segmentation-based-object-categorization","display_name":"Segmentation-based object categorization","score":0.5315504}],"concepts":[{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.7152636},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6660924},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6496068},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.64731044},{"id":"https://openalex.org/C114466953","wikidata":"https://www.wikidata.org/wiki/Q6034165","display_name":"Initialization","level":2,"score":0.63469017},{"id":"https://openalex.org/C65885262","wikidata":"https://www.wikidata.org/wiki/Q7429708","display_name":"Scale-space segmentation","level":4,"score":0.59815127},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5661155},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.5589205},{"id":"https://openalex.org/C25694479","wikidata":"https://www.wikidata.org/wiki/Q7446278","display_name":"Segmentation-based object categorization","level":5,"score":0.5315504},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45953393},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.42779845},{"id":"https://openalex.org/C2776029896","wikidata":"https://www.wikidata.org/wiki/Q3935810","display_name":"Relaxation (psychology)","level":2,"score":0.41439864},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icnn.1995.487817","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.65,"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":4,"referenced_works":["https://openalex.org/W2004484358","https://openalex.org/W2073547849","https://openalex.org/W2096502996","https://openalex.org/W2107792892"],"related_works":["https://openalex.org/W4205800335","https://openalex.org/W3144569342","https://openalex.org/W2945274617","https://openalex.org/W2551987074","https://openalex.org/W2386644571","https://openalex.org/W2371519352","https://openalex.org/W2185902295","https://openalex.org/W2103507220","https://openalex.org/W2055202857","https://openalex.org/W1999008862"],"abstract_inverted_index":{"An":[0],"image":[1,60,73],"segmentation":[2,56,74,85,95,121,165],"process":[3,52,166],"can":[4,24,66],"be":[5,67],"favourably":[6],"imaged":[7],"onto":[8],"a":[9,13,17,76,91,111],"multi-particle":[10],"system":[11],"by":[12,147],"relaxation":[14,51,169],"setup":[15],"as":[16],"constraint":[18,77,102],"satisfaction":[19,78,103],"problem":[20],"(CSP).":[21],"One":[22],"pixel":[23,61],"develop":[25],"itself":[26],"due":[27],"to":[28],"its":[29],"own":[30],"state":[31],"and":[32,125,136,153,160,167],"depending":[33],"on":[34,163,173],"the":[35,38,50,55,94,117,120,130,133,137,140,143,150,157,164,168,174],"states":[36],"of":[37,43,96,132,139,156],"adjacent":[39],"pixels":[40],"in":[41,53,69],"direction":[42],"class":[44],"intensity":[45],"means.":[46],"In":[47],"this":[48,89],"case,":[49],"which":[54,109],"decision":[57],"about":[58],"each":[59],"is":[62,82,107,177],"an":[63,83,100],"iterative":[64],"approach":[65],"performed":[68],"parallel.":[70],"The":[71,171],"region-based":[72],"using":[75,99],"neural":[79,104,134],"network":[80,105,135,175],"(CSNN)":[81],"innovative":[84],"technique.":[86],"Starting":[87],"from":[88],"model,":[90],"technique":[92],"for":[93],"medical":[97],"images":[98],"optimized":[101],"(OCSNN)":[106],"presented,":[108],"boasts":[110],"significantly":[112],"higher":[113],"performance":[114],"compared":[115],"with":[116],"CSNN":[118],"regarding":[119],"quality,":[122],"time":[123],"factor,":[124],"memory":[126],"demand.":[127],"We":[128],"describe":[129],"structure":[131],"principle":[138],"data":[141],"compression,":[142],"initialization":[144],"model":[145],"adjusted":[146],"signal":[148],"statistics,":[149],"weight":[151],"function":[152],"temporary":[154],"assessment":[155],"neighbourhood":[158],"influence":[159],"their":[161],"influences":[162],"dynamics.":[170],"effect":[172],"efficiency":[176],"presented.":[178]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1601676851","counts_by_year":[],"updated_date":"2024-12-24T16:28:37.256069","created_date":"2016-06-24"}