{"id":"https://openalex.org/W2101618071","doi":"https://doi.org/10.1109/icnc.2012.6234510","title":"Automated recognition of human gait pattern using manifold learning algorithm","display_name":"Automated recognition of human gait pattern using manifold learning algorithm","publication_year":2012,"publication_date":"2012-05-01","ids":{"openalex":"https://openalex.org/W2101618071","doi":"https://doi.org/10.1109/icnc.2012.6234510","mag":"2101618071"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icnc.2012.6234510","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101424094","display_name":"Jianning Wu","orcid":"https://orcid.org/0000-0002-7250-1184"},"institutions":[{"id":"https://openalex.org/I111753288","display_name":"Fujian Normal University","ror":"https://ror.org/020azk594","country_code":"CN","type":"funder","lineage":["https://openalex.org/I111753288"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Jianning Wu","raw_affiliation_strings":["School of Mathematics and Computer Science , Fujian Normal University , Fuzhou , China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics and Computer Science , Fujian Normal University , Fuzhou , China","institution_ids":["https://openalex.org/I111753288"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5101424094"],"corresponding_institution_ids":["https://openalex.org/I111753288"],"apc_list":null,"apc_paid":null,"fwci":2.307,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":8,"citation_normalized_percentile":{"value":0.805771,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":"50","issue":null,"first_page":"199","last_page":"202"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9868,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.9788,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/isomap","display_name":"Isomap","score":0.95690274}],"concepts":[{"id":"https://openalex.org/C2778626561","wikidata":"https://www.wikidata.org/wiki/Q6086067","display_name":"Isomap","level":4,"score":0.95690274},{"id":"https://openalex.org/C151876577","wikidata":"https://www.wikidata.org/wiki/Q7049464","display_name":"Nonlinear dimensionality reduction","level":3,"score":0.81738067},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6930848},{"id":"https://openalex.org/C151800584","wikidata":"https://www.wikidata.org/wiki/Q2370000","display_name":"Gait","level":2,"score":0.6425514},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5715125},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5232191},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5111013},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.50174546},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.45407096},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.44340414},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43528512},{"id":"https://openalex.org/C173906292","wikidata":"https://www.wikidata.org/wiki/Q1493441","display_name":"Gait analysis","level":3,"score":0.42041323},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.29479873},{"id":"https://openalex.org/C99508421","wikidata":"https://www.wikidata.org/wiki/Q2678675","display_name":"Physical medicine and rehabilitation","level":1,"score":0.08875832},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icnc.2012.6234510","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.44,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W1578196132","https://openalex.org/W1968056506","https://openalex.org/W2001141328","https://openalex.org/W2051552261","https://openalex.org/W2062536306","https://openalex.org/W2080718748","https://openalex.org/W2083231156","https://openalex.org/W2144584391","https://openalex.org/W2148603752","https://openalex.org/W376511287"],"related_works":["https://openalex.org/W4287375746","https://openalex.org/W3215139855","https://openalex.org/W3183997925","https://openalex.org/W3124275785","https://openalex.org/W2375574759","https://openalex.org/W2375518579","https://openalex.org/W2366334780","https://openalex.org/W2351371028","https://openalex.org/W1606646545","https://openalex.org/W1562785334"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3],"investigated":[4],"the":[5,8,17,20,45,79,84,96,113,124,137],"application":[6],"of":[7,19,87],"manifold":[9,25,108,116],"learning":[10,26,61,109],"algorithm":[11,27,33,110],"in":[12,58,118],"gait":[13,21,69,102,120,127,132,138],"data":[14,70],"analysis":[15],"for":[16,43,99,135,147],"improvement":[18],"classification":[22,54,139],"performance.":[23,140],"A":[24],"such":[28,63],"as":[29,64],"isometric":[30],"feature":[31,41],"mapping":[32],"(ISOMAP)":[34],"was":[35,55],"firstly":[36],"employed":[37],"to":[38,95],"perform":[39],"nonlinear":[40,126],"extraction":[42],"initiating":[44],"training":[46],"set,":[47],"and":[48,73,78,122],"its":[49],"effect":[50],"on":[51],"a":[52],"subsequent":[53],"then":[56],"tested":[57],"combination":[59],"with":[60,130],"algorithms":[62],"support":[65],"vector":[66],"machines.":[67],"The":[68,141],"including":[71],"young":[72],"elderly":[74],"participants":[75],"were":[76],"analyzed,":[77],"experimental":[80],"results":[81],"demonstrated":[82],"that":[83,107],"generalization":[85],"performance":[86,93],"ISOMAP-SVM":[88],"is":[89],"an":[90],"evidently":[91],"improved":[92],"compared":[94],"traditional":[97],"classifier":[98],"recognizing":[100],"young-elderly":[101],"patterns.":[103],"Our":[104],"work":[105],"suggested":[106],"can":[111],"find":[112],"intrinsic":[114],"low-dimensional":[115],"embedding":[117],"high-dimensional":[119],"data,":[121],"obtain":[123],"`true'":[125],"features":[128],"associated":[129],"human":[131],"function":[133],"change":[134],"improving":[136],"proposed":[142],"technique":[143],"has":[144],"considerable":[145],"potential":[146],"future":[148],"clinical":[149],"applications.":[150]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2101618071","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":1}],"updated_date":"2025-04-22T12:25:09.269704","created_date":"2016-06-24"}