{"id":"https://openalex.org/W2126898141","doi":"https://doi.org/10.1109/icnc.2009.796","title":"Validation of the Gamma Test for Model Input Data Selection - with a Case Study in Evaporation Estimation","display_name":"Validation of the Gamma Test for Model Input Data Selection - with a Case Study in Evaporation Estimation","publication_year":2009,"publication_date":"2009-01-01","ids":{"openalex":"https://openalex.org/W2126898141","doi":"https://doi.org/10.1109/icnc.2009.796","mag":"2126898141"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icnc.2009.796","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113674518","display_name":"Dawei Han","orcid":null},"institutions":[{"id":"https://openalex.org/I36234482","display_name":"University of Bristol","ror":"https://ror.org/0524sp257","country_code":"GB","type":"funder","lineage":["https://openalex.org/I36234482"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"D. Han","raw_affiliation_strings":["(Department of Civil Engineering, University of Bristol, Bristol, UK)"],"affiliations":[{"raw_affiliation_string":"(Department of Civil Engineering, University of Bristol, Bristol, UK)","institution_ids":["https://openalex.org/I36234482"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5073342710","display_name":"Weizhong Yan","orcid":"https://orcid.org/0000-0002-7916-8476"},"institutions":[{"id":"https://openalex.org/I1332737386","display_name":"General Electric (United States)","ror":"https://ror.org/013msgt25","country_code":"US","type":"funder","lineage":["https://openalex.org/I1332737386"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"W. Yan","raw_affiliation_strings":["GE Res., NY, USA"],"affiliations":[{"raw_affiliation_string":"GE Res., NY, USA","institution_ids":["https://openalex.org/I1332737386"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.657,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.551522,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"469","last_page":"473"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11490","display_name":"Hydrological Forecasting Using AI","score":0.9805,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12093","display_name":"Greenhouse Technology and Climate Control","score":0.9666,"subfield":{"id":"https://openalex.org/subfields/1110","display_name":"Plant Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/identification","display_name":"Identification","score":0.52437043}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7283303},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.6158724},{"id":"https://openalex.org/C2778476105","wikidata":"https://www.wikidata.org/wiki/Q628539","display_name":"Workload","level":2,"score":0.53776306},{"id":"https://openalex.org/C93959086","wikidata":"https://www.wikidata.org/wiki/Q6888345","display_name":"Model selection","level":2,"score":0.53481394},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5271323},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.52437043},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5192623},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.47582462},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47093025},{"id":"https://openalex.org/C16910744","wikidata":"https://www.wikidata.org/wiki/Q7705759","display_name":"Test data","level":2,"score":0.4683627},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4468049},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.43047887},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icnc.2009.796","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.58,"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W1502387293","https://openalex.org/W2032734256","https://openalex.org/W2034490806","https://openalex.org/W2035691333","https://openalex.org/W2052589403","https://openalex.org/W2095046243","https://openalex.org/W2100085182","https://openalex.org/W2109306224","https://openalex.org/W2127170577","https://openalex.org/W2149723649","https://openalex.org/W2164722199","https://openalex.org/W220542484","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W986318368","https://openalex.org/W4381571012","https://openalex.org/W3195353062","https://openalex.org/W3186268266","https://openalex.org/W2990194547","https://openalex.org/W2384410913","https://openalex.org/W2352878646","https://openalex.org/W2130149817","https://openalex.org/W2004734601","https://openalex.org/W2000785801"],"abstract_inverted_index":{"In":[0,41],"nonlinear":[1,69],"model":[2,20,31,55,71,105,134],"identification,":[3],"mathematical":[4],"modellers":[5],"need":[6],"to":[7,112],"find":[8],"the":[9,18,44,74,85,89,96,118,122,132],"best":[10],"input":[11,21,38,60],"variables":[12],"by":[13],"training":[14],"and":[15,58,95,125],"testing":[16],"all":[17],"likely":[19],"combinations.":[22],"This":[23],"is":[24,34,48,73,92],"very":[25],"time":[26],"consuming":[27],"since":[28],"a":[29,114,128],"complete":[30],"development":[32,56],"cycle":[33],"needed":[35],"for":[36,50,102,121],"each":[37],"variable":[39],"combination.":[40],"this":[42,126],"study,":[43],"gamma":[45,90,108],"test":[46,91],"(GT)":[47],"explored":[49],"its":[51,99],"suitability":[52],"in":[53],"reducing":[54],"workload":[57],"providing":[59],"data":[61],"guidance":[62],"before":[63],"actual":[64],"models":[65,124],"are":[66,110],"developed.":[67],"The":[68,107],"dynamic":[70],"tested":[72],"generalized":[75],"regression":[76],"neural":[77],"network":[78],"(GRNN).":[79],"It":[80],"has":[81,127],"been":[82],"found":[83],"that":[84],"overall":[86],"performance":[87],"of":[88],"quite":[93],"encouraging":[94],"GT":[97],"demonstrates":[98],"huge":[100],"potential":[101],"efficient":[103],"GRNN":[104,123],"development.":[106],"values":[109],"able":[111],"provide":[113],"good":[115],"indication":[116],"about":[117],"achievable":[119],"accuracy":[120],"distinctive":[129],"advantage":[130],"over":[131],"traditional":[133],"selection":[135],"approaches.":[136]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2126898141","counts_by_year":[{"year":2018,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2025-04-18T06:50:57.194136","created_date":"2016-06-24"}