{"id":"https://openalex.org/W2168802269","doi":"https://doi.org/10.1109/icnc.2008.271","title":"Copper Strip Surface Defects Inspection Based on SVM-RBF","display_name":"Copper Strip Surface Defects Inspection Based on SVM-RBF","publication_year":2008,"publication_date":"2008-01-01","ids":{"openalex":"https://openalex.org/W2168802269","doi":"https://doi.org/10.1109/icnc.2008.271","mag":"2168802269"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icnc.2008.271","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5089624396","display_name":"Ruiyu Liang","orcid":"https://orcid.org/0000-0002-6813-4203"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"education","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ruiyu Liang","raw_affiliation_strings":["Computer and Information Institute, Hohai University, HHU, Changzhou, China"],"affiliations":[{"raw_affiliation_string":"Computer and Information Institute, Hohai University, HHU, Changzhou, China","institution_ids":["https://openalex.org/I163340411"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100550489","display_name":"Yanqiong Ding","orcid":null},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"education","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yanqiong Ding","raw_affiliation_strings":["Computer and Information Institute, Hohai University, HHU, Changzhou, China"],"affiliations":[{"raw_affiliation_string":"Computer and Information Institute, Hohai University, HHU, Changzhou, China","institution_ids":["https://openalex.org/I163340411"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100768031","display_name":"Xuewu Zhang","orcid":"https://orcid.org/0000-0001-6214-880X"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"education","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xuewu Zhang","raw_affiliation_strings":["Computer and Information Institute, Hohai University, HHU, Changzhou, China"],"affiliations":[{"raw_affiliation_string":"Computer and Information Institute, Hohai University, HHU, Changzhou, China","institution_ids":["https://openalex.org/I163340411"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101872524","display_name":"Jiasheng Chen","orcid":"https://orcid.org/0009-0007-4860-0207"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"education","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiasheng Chen","raw_affiliation_strings":["Computer and Information Institute, Hohai University, HHU, Changzhou, China"],"affiliations":[{"raw_affiliation_string":"Computer and Information Institute, Hohai University, HHU, Changzhou, China","institution_ids":["https://openalex.org/I163340411"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.432,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":9,"citation_normalized_percentile":{"value":0.917348,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"41","last_page":"45"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13049","display_name":"Surface Roughness and Optical Measurements","score":0.9898,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12549","display_name":"Image and Object Detection Techniques","score":0.9884,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C98856871","wikidata":"https://www.wikidata.org/wiki/Q1588488","display_name":"Radial basis function","level":3,"score":0.82925904},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.8118501},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.702773},{"id":"https://openalex.org/C92423082","wikidata":"https://www.wikidata.org/wiki/Q132146","display_name":"Zernike polynomials","level":3,"score":0.6756208},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6679972},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.62478817},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.61333674},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4972737},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.45498127},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C165699331","wikidata":"https://www.wikidata.org/wiki/Q461533","display_name":"Wavefront","level":2,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icnc.2008.271","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.47,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1563088657","https://openalex.org/W1577671906","https://openalex.org/W1770158200","https://openalex.org/W1978201751","https://openalex.org/W198953946","https://openalex.org/W2045010718","https://openalex.org/W2120617515","https://openalex.org/W2132680427","https://openalex.org/W2137079931","https://openalex.org/W2139963745","https://openalex.org/W2146880335","https://openalex.org/W2151419026","https://openalex.org/W2159498975","https://openalex.org/W2166405365","https://openalex.org/W2169029660","https://openalex.org/W2728930222","https://openalex.org/W4255391993"],"related_works":["https://openalex.org/W3160617640","https://openalex.org/W3141187597","https://openalex.org/W2547138831","https://openalex.org/W2369242147","https://openalex.org/W2183108721","https://openalex.org/W2081217624","https://openalex.org/W2073465494","https://openalex.org/W2067788074","https://openalex.org/W2061580049","https://openalex.org/W1997638723"],"abstract_inverted_index":{"Recently,":[0],"it":[1],"becomes":[2],"more":[3],"important":[4],"to":[5,53,106],"ensure":[6],"the":[7,10,66,83,115,118,125],"quality":[8],"of":[9,32,73,117],"products":[11],"as":[12,65,112,114],"copper":[13],"strip":[14],"manufacturing":[15],"has":[16,81],"been":[17],"highly":[18],"developed.":[19],"The":[20,69,120],"most":[21],"difficult":[22],"problem":[23],"in":[24,85],"process":[25],"control":[26],"and":[27,59,92],"automatic":[28],"inspection":[29],"is":[30,104,127],"classification":[31],"surface":[33],"defects,":[34],"so":[35],"we":[36],"develop":[37],"an":[38],"improved":[39],"RBF":[40,74],"(radial":[41],"basis":[42],"function)":[43],"neural":[44],"network":[45,75],"classifier":[46],"based":[47],"on":[48],"SVM":[49],"(support":[50],"vector":[51],"machine)":[52],"automatically":[54],"learn":[55],"complicated":[56],"defect":[57,67],"patterns":[58],"use":[60],"pseudo":[61],"Zernike":[62],"moment":[63],"invariant":[64],"feature.":[68],"optimal":[70],"initial":[71],"parameters":[72,111],"are":[76],"gained":[77],"through":[78],"SVM,":[79],"which":[80],"resolved":[82],"problems":[84],"traditional":[86],"methods,":[87],"e.g.":[88],"long":[89],"learning":[90,102],"time,":[91],"easily":[93],"getting":[94],"into":[95],"local":[96],"minimum,":[97],"etc.":[98],"Furthermore,":[99],"a":[100],"BP":[101],"algorithm":[103],"presented":[105],"adjust":[107],"these":[108],"hidden":[109],"node":[110],"well":[113],"weights":[116],"SVM-RBF.":[119],"experimental":[121],"results":[122],"show":[123],"that":[124],"method":[126],"effective.":[128]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2168802269","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2017,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2013,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2025-01-08T13:04:05.601306","created_date":"2016-06-24"}