{"id":"https://openalex.org/W3178543101","doi":"https://doi.org/10.1109/icmlc51923.2020.9469568","title":"A Three-stage Method for Classification of Binary Imbalanced Big Data","display_name":"A Three-stage Method for Classification of Binary Imbalanced Big Data","publication_year":2020,"publication_date":"2020-12-02","ids":{"openalex":"https://openalex.org/W3178543101","doi":"https://doi.org/10.1109/icmlc51923.2020.9469568","mag":"3178543101"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmlc51923.2020.9469568","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5017499347","display_name":"Junhai Zhai","orcid":"https://orcid.org/0000-0001-9962-7417"},"institutions":[{"id":"https://openalex.org/I43337087","display_name":"Hebei University","ror":"https://ror.org/01p884a79","country_code":"CN","type":"education","lineage":["https://openalex.org/I43337087"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"JUN-HAI ZHAI","raw_affiliation_strings":["Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, Baoding, China"],"affiliations":[{"raw_affiliation_string":"Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, Baoding, China","institution_ids":["https://openalex.org/I43337087"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100779912","display_name":"Sufang Zhang","orcid":"https://orcid.org/0000-0002-7585-6490"},"institutions":[{"id":"https://openalex.org/I141301092","display_name":"China Meteorological Administration","ror":"https://ror.org/00bx3rb98","country_code":"CN","type":"government","lineage":["https://openalex.org/I141301092"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"SU-FANG ZHANG","raw_affiliation_strings":["Hebei Branch of China Meteorological Administration Training Center, China Meteorological Administration, Baoding, China"],"affiliations":[{"raw_affiliation_string":"Hebei Branch of China Meteorological Administration Training Center, China Meteorological Administration, Baoding, China","institution_ids":["https://openalex.org/I141301092"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013134823","display_name":"Mohan Wang","orcid":"https://orcid.org/0000-0003-4505-454X"},"institutions":[{"id":"https://openalex.org/I43337087","display_name":"Hebei University","ror":"https://ror.org/01p884a79","country_code":"CN","type":"education","lineage":["https://openalex.org/I43337087"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"MO-HAN WANG","raw_affiliation_strings":["Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, Baoding, China"],"affiliations":[{"raw_affiliation_string":"Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, Baoding, China","institution_ids":["https://openalex.org/I43337087"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101533266","display_name":"Yan Li","orcid":"https://orcid.org/0000-0001-9562-9634"},"institutions":[{"id":"https://openalex.org/I25254941","display_name":"Beijing Normal University","ror":"https://ror.org/022k4wk35","country_code":"CN","type":"education","lineage":["https://openalex.org/I25254941"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"YAN LI","raw_affiliation_strings":["School of Applied Mathematics, Beijing Normal University, Zhuhai, China"],"affiliations":[{"raw_affiliation_string":"School of Applied Mathematics, Beijing Normal University, Zhuhai, China","institution_ids":["https://openalex.org/I25254941"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.079,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.438836,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":73},"biblio":{"volume":null,"issue":null,"first_page":"207","last_page":"212"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13429","display_name":"Electricity Theft Detection Techniques","score":0.945,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.9326,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/binary-classification","display_name":"Binary classification","score":0.5379897},{"id":"https://openalex.org/keywords/statistical-classification","display_name":"Statistical classification","score":0.45663053},{"id":"https://openalex.org/keywords/binary-data","display_name":"Binary data","score":0.417345}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7130294},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.6448476},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6069292},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.6053977},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.5848578},{"id":"https://openalex.org/C48372109","wikidata":"https://www.wikidata.org/wiki/Q3913","display_name":"Binary number","level":2,"score":0.57264036},{"id":"https://openalex.org/C66905080","wikidata":"https://www.wikidata.org/wiki/Q17005494","display_name":"Binary classification","level":3,"score":0.5379897},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.53323156},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46148553},{"id":"https://openalex.org/C110083411","wikidata":"https://www.wikidata.org/wiki/Q1744628","display_name":"Statistical classification","level":2,"score":0.45663053},{"id":"https://openalex.org/C146357865","wikidata":"https://www.wikidata.org/wiki/Q1123245","display_name":"Stage (stratigraphy)","level":2,"score":0.42781338},{"id":"https://openalex.org/C2779190172","wikidata":"https://www.wikidata.org/wiki/Q4913888","display_name":"Binary data","level":3,"score":0.417345},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4120183},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.17707801},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16313416},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmlc51923.2020.9469568","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/13","score":0.63,"display_name":"Climate action"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1542270631","https://openalex.org/W1563938718","https://openalex.org/W1673310716","https://openalex.org/W1941659294","https://openalex.org/W1994410331","https://openalex.org/W1996523702","https://openalex.org/W2111072639","https://openalex.org/W2132791018","https://openalex.org/W2136256517","https://openalex.org/W2148143831","https://openalex.org/W2531607313","https://openalex.org/W2549690445","https://openalex.org/W2592842236","https://openalex.org/W2612634114","https://openalex.org/W2744139632","https://openalex.org/W2763619424","https://openalex.org/W2772847824","https://openalex.org/W2884839231","https://openalex.org/W2913474130","https://openalex.org/W2948219206","https://openalex.org/W2980634678"],"related_works":["https://openalex.org/W2165713005","https://openalex.org/W2154693897","https://openalex.org/W2094988397","https://openalex.org/W2083885402","https://openalex.org/W2083580028","https://openalex.org/W2046798493","https://openalex.org/W2018596126","https://openalex.org/W2018164323","https://openalex.org/W1980535114","https://openalex.org/W1523447316"],"abstract_inverted_index":{"In":[0,40,84,108],"the":[1,34,41,65,68,85,109,142,151,165,174],"real":[2],"world,":[3],"there":[4],"are":[5,147],"many":[6],"imbalanced":[7,37,45,55],"data":[8,38,46,57,72],"classification":[9,52],"problems,":[10],"such":[11],"as":[12],"extreme":[13],"weather":[14],"prediction,":[15,18],"software":[16],"defect":[17],"machinery":[19],"fault":[20],"diagnosis,":[21],"spam":[22],"filtering,":[23],"etc.":[24],"It":[25],"has":[26],"important":[27,95],"theoretical":[28],"and":[29,102,125,129,134,171],"practical":[30],"value":[31],"to":[32,93,140,149],"study":[33],"problem":[35],"of":[36,43,53,121],"classification.":[39],"framework":[42],"binary":[44,54],"classification,":[47],"a":[48],"three-stage":[49],"method":[50,92,153,167],"for":[51],"big":[56,71],"was":[58,73],"proposed":[59,152,166],"in":[60,64,100],"this":[61],"paper.":[62],"Specifically,":[63],"first":[66,113],"stage,":[67,87,111],"negative":[69,105,122],"class":[70,106,123,127],"clustered":[74],"into":[75],"K":[76,104,115,132],"clusters":[77],"by":[78],"K-means":[79],"algorithm":[80],"on":[81,158],"Hadoop":[82],"platform.":[83],"second":[86],"we":[88,112,136],"use":[89],"instance":[90],"selection":[91],"select":[94],"samples":[96],"from":[97],"each":[98],"cluster":[99],"parallel,":[101],"obtain":[103],"subsets.":[107],"third":[110],"construct":[114],"balanced":[116],"training":[117],"sets":[118],"which":[119],"consist":[120],"subset":[124],"positive":[126],"subset,":[128],"then":[130],"train":[131],"classifiers,":[133],"finally":[135],"integrate":[137],"these":[138],"classifiers":[139],"classify":[141],"unseen":[143],"samples.":[144],"Some":[145],"experiments":[146],"conducted":[148],"compare":[150],"with":[154],"two":[155],"state-of-the-art":[156],"methods":[157],"G-means.":[159],"The":[160],"experimental":[161],"results":[162],"demonstrate":[163],"that":[164],"is":[168],"more":[169],"effective":[170],"efficient":[172],"than":[173],"compared":[175],"approaches.":[176]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3178543101","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2024-12-28T16:28:29.916024","created_date":"2021-07-19"}