{"id":"https://openalex.org/W2770813904","doi":"https://doi.org/10.1109/icmlc.2017.8108965","title":"LIFE prediction of lognormal distribution based on LSSVM","display_name":"LIFE prediction of lognormal distribution based on LSSVM","publication_year":2017,"publication_date":"2017-07-01","ids":{"openalex":"https://openalex.org/W2770813904","doi":"https://doi.org/10.1109/icmlc.2017.8108965","mag":"2770813904"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmlc.2017.8108965","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5018035104","display_name":"Xin-Yao Zou","orcid":null},"institutions":[{"id":"https://openalex.org/I4210122543","display_name":"Guangdong Polytechnic Normal University","ror":"https://ror.org/02pcb5m77","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210122543"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xin-Yao Zou","raw_affiliation_strings":["Mechanical and electrical department, Guangdong AIB Polytechnic College, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"Mechanical and electrical department, Guangdong AIB Polytechnic College, Guangzhou, China","institution_ids":["https://openalex.org/I4210122543"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5054201357","display_name":"Liang Xue","orcid":"https://orcid.org/0000-0002-0044-4598"},"institutions":[{"id":"https://openalex.org/I32246829","display_name":"Guangdong University of Education","ror":"https://ror.org/0574der91","country_code":"CN","type":"education","lineage":["https://openalex.org/I32246829"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Liang Xue","raw_affiliation_strings":["Guangdong University of Education, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"Guangdong University of Education, Guangzhou, China","institution_ids":["https://openalex.org/I32246829"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":63},"biblio":{"volume":null,"issue":null,"first_page":"483","last_page":"487"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14117","display_name":"Integrated Circuits and Semiconductor Failure Analysis","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12169","display_name":"Non-Destructive Testing Techniques","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/log-normal-distribution","display_name":"Log-normal distribution","score":0.6906746},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.46491557},{"id":"https://openalex.org/keywords/least-squares-function-approximation","display_name":"Least-squares function approximation","score":0.41148013}],"concepts":[{"id":"https://openalex.org/C151620405","wikidata":"https://www.wikidata.org/wiki/Q826116","display_name":"Log-normal distribution","level":2,"score":0.6906746},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6562221},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.54658455},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.54223275},{"id":"https://openalex.org/C19499675","wikidata":"https://www.wikidata.org/wiki/Q232207","display_name":"Monte Carlo method","level":2,"score":0.53074175},{"id":"https://openalex.org/C129848803","wikidata":"https://www.wikidata.org/wiki/Q2564360","display_name":"Sample size determination","level":2,"score":0.5187438},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.51360655},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.48776108},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.46491557},{"id":"https://openalex.org/C9936470","wikidata":"https://www.wikidata.org/wiki/Q6510405","display_name":"Least-squares function approximation","level":3,"score":0.41148013},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.38027787},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37799418},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37666994},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3399682},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.32882932},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmlc.2017.8108965","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Responsible consumption and production","id":"https://metadata.un.org/sdg/12","score":0.52}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1208518215","https://openalex.org/W1496317909","https://openalex.org/W1554663460","https://openalex.org/W1560724230","https://openalex.org/W1923027492","https://openalex.org/W1994005439","https://openalex.org/W2085286556","https://openalex.org/W2105911655","https://openalex.org/W2111440106","https://openalex.org/W2119821739","https://openalex.org/W2216444323","https://openalex.org/W2463819226","https://openalex.org/W4239510810","https://openalex.org/W4301501800","https://openalex.org/W4384342391","https://openalex.org/W4388297464","https://openalex.org/W790003849"],"related_works":["https://openalex.org/W3162204513","https://openalex.org/W3149585742","https://openalex.org/W3125645241","https://openalex.org/W3098004296","https://openalex.org/W2493033802","https://openalex.org/W2154002584","https://openalex.org/W2100762998","https://openalex.org/W2083114504","https://openalex.org/W2023402429","https://openalex.org/W2011669161"],"abstract_inverted_index":{"It's":[0],"becoming":[1],"more":[2,4],"and":[3,113],"difficult":[5],"to":[6,34,75],"get":[7],"enough":[8],"failure":[9,29,71],"data":[10,30,127],"sample":[11,49,68],"during":[12],"life":[13,42,117],"test":[14],"of":[15,28,45,64,85,116],"modern":[16],"integrated":[17],"circuit(IC).":[18],"However":[19],"traditional":[20],"reliability":[21],"assessment":[22],"methods":[23],"need":[24],"a":[25,41],"large":[26],"number":[27],"sets.":[31],"In":[32,78],"order":[33],"resolve":[35],"this":[36,38,80],"contradiction,":[37],"paper":[39,81],"proposed":[40],"prediction":[43,118],"method":[44,59,109],"IC":[46,65],"with":[47,66,101,125],"small":[48,67,126],"based":[50],"on":[51],"least":[52],"squares":[53],"support":[54],"vector":[55],"machine":[56],"(LSSVM).":[57],"This":[58],"can":[60],"predict":[61],"the":[62,70,83],"lifetime":[63],"when":[69,123],"distribution":[72],"is":[73],"assumed":[74],"lognormal":[76,130],"distribution.":[77,131],"addition,":[79],"demonstrated":[82],"effectiveness":[84],"LSSVM":[86,108],"approach":[87],"by":[88],"Monte":[89],"Carlo":[90],"simulation.":[91],"Error":[92],"back":[93],"propagation":[94],"(BP)":[95],"neural":[96,121],"network":[97,122],"was":[98],"also":[99],"compared":[100],"it.":[102],"The":[103],"simulation":[104],"results":[105],"show":[106],"that":[107],"has":[110],"better":[111],"generalization":[112],"higher":[114],"accuracy":[115],"than":[119],"BP":[120],"dealing":[124],"samples":[128],"from":[129]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2770813904","counts_by_year":[],"updated_date":"2024-12-13T13:49:05.099769","created_date":"2017-12-04"}