{"id":"https://openalex.org/W2189093690","doi":"https://doi.org/10.1109/icmlc.2015.7340902","title":"Cost-sensitive decision tree with probabilistic pruning mechanism","display_name":"Cost-sensitive decision tree with probabilistic pruning mechanism","publication_year":2015,"publication_date":"2015-07-01","ids":{"openalex":"https://openalex.org/W2189093690","doi":"https://doi.org/10.1109/icmlc.2015.7340902","mag":"2189093690"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmlc.2015.7340902","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058078141","display_name":"Hong Zhao","orcid":"https://orcid.org/0000-0001-9339-1829"},"institutions":[{"id":"https://openalex.org/I9356336","display_name":"Zhangzhou Normal University","ror":"https://ror.org/02vj1vm13","country_code":"CN","type":"education","lineage":["https://openalex.org/I9356336"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hong Zhao","raw_affiliation_strings":["Lab of Granular Computing, Minnan Normal University, Zhangzhou, China"],"affiliations":[{"raw_affiliation_string":"Lab of Granular Computing, Minnan Normal University, Zhangzhou, China","institution_ids":["https://openalex.org/I9356336"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045426985","display_name":"Xiang-Ju Li","orcid":null},"institutions":[{"id":"https://openalex.org/I9356336","display_name":"Zhangzhou Normal University","ror":"https://ror.org/02vj1vm13","country_code":"CN","type":"education","lineage":["https://openalex.org/I9356336"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiang-Ju Li","raw_affiliation_strings":["Lab of Granular Computing, Minnan Normal University, Zhangzhou, China"],"affiliations":[{"raw_affiliation_string":"Lab of Granular Computing, Minnan Normal University, Zhangzhou, China","institution_ids":["https://openalex.org/I9356336"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023571033","display_name":"Zilong Xu","orcid":"https://orcid.org/0000-0003-1690-1383"},"institutions":[{"id":"https://openalex.org/I9356336","display_name":"Zhangzhou Normal University","ror":"https://ror.org/02vj1vm13","country_code":"CN","type":"education","lineage":["https://openalex.org/I9356336"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zi-Long Xu","raw_affiliation_strings":["Lab of Granular Computing, Minnan Normal University, Zhangzhou, China"],"affiliations":[{"raw_affiliation_string":"Lab of Granular Computing, Minnan Normal University, Zhangzhou, China","institution_ids":["https://openalex.org/I9356336"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5078911343","display_name":"William Zhu","orcid":"https://orcid.org/0000-0001-8898-9244"},"institutions":[{"id":"https://openalex.org/I9356336","display_name":"Zhangzhou Normal University","ror":"https://ror.org/02vj1vm13","country_code":"CN","type":"education","lineage":["https://openalex.org/I9356336"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"William Zhu","raw_affiliation_strings":["Lab of Granular Computing, Minnan Normal University, Zhangzhou, China"],"affiliations":[{"raw_affiliation_string":"Lab of Granular Computing, Minnan Normal University, Zhangzhou, China","institution_ids":["https://openalex.org/I9356336"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.798,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.544196,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"81","last_page":"87"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11063","display_name":"Rough Sets and Fuzzy Logic","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11063","display_name":"Rough Sets and Fuzzy Logic","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9818,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.89029074},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.5907686},{"id":"https://openalex.org/keywords/decision-tree-model","display_name":"Decision tree model","score":0.45369393},{"id":"https://openalex.org/keywords/id3-algorithm","display_name":"ID3 algorithm","score":0.4255551},{"id":"https://openalex.org/keywords/alternating-decision-tree","display_name":"Alternating decision tree","score":0.4159276}],"concepts":[{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.89029074},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.78305024},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.714067},{"id":"https://openalex.org/C10229987","wikidata":"https://www.wikidata.org/wiki/Q17083028","display_name":"Incremental decision tree","level":4,"score":0.6978718},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.69094574},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.5907686},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5571666},{"id":"https://openalex.org/C5481197","wikidata":"https://www.wikidata.org/wiki/Q16766476","display_name":"Decision tree learning","level":3,"score":0.5487377},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50751674},{"id":"https://openalex.org/C56289965","wikidata":"https://www.wikidata.org/wiki/Q5249246","display_name":"Decision tree model","level":3,"score":0.45369393},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.4350146},{"id":"https://openalex.org/C183931066","wikidata":"https://www.wikidata.org/wiki/Q1653378","display_name":"ID3 algorithm","level":5,"score":0.4255551},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41616833},{"id":"https://openalex.org/C120136583","wikidata":"https://www.wikidata.org/wiki/Q4736414","display_name":"Alternating decision tree","level":5,"score":0.4159276},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2090671},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmlc.2015.7340902","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.66,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1542270631","https://openalex.org/W1553080079","https://openalex.org/W1560597350","https://openalex.org/W1819386543","https://openalex.org/W1984323748","https://openalex.org/W2018186689","https://openalex.org/W2038030840","https://openalex.org/W2104597806","https://openalex.org/W2113090545","https://openalex.org/W2125055259","https://openalex.org/W2127891163","https://openalex.org/W2158633287","https://openalex.org/W2233374963","https://openalex.org/W2282355202","https://openalex.org/W2564863596","https://openalex.org/W3112020351","https://openalex.org/W4232122439","https://openalex.org/W4242464423","https://openalex.org/W4247767684","https://openalex.org/W4285719527","https://openalex.org/W87848775"],"related_works":["https://openalex.org/W4243803609","https://openalex.org/W2591672004","https://openalex.org/W2364142430","https://openalex.org/W2357812423","https://openalex.org/W2352124552","https://openalex.org/W2348234648","https://openalex.org/W2120748120","https://openalex.org/W2087668131","https://openalex.org/W1982169401","https://openalex.org/W1603140234"],"abstract_inverted_index":{"Cost-sensitive":[0],"decision":[1,33,39,75,84,97,186,200],"trees":[2,40],"have":[3],"a":[4,78,141],"great":[5],"success":[6],"in":[7,13],"building":[8,73],"models":[9],"for":[10,72,82,198],"classification":[11],"tasks":[12],"data":[14],"mining":[15],"and":[16,48,77,112],"machine":[17],"learning.":[18],"Decision":[19],"tree":[20,57,76,98],"pruning":[21,80,143,147,159,178,196],"technique":[22],"is":[23,58,99,149],"regarded":[24],"as":[25],"an":[26,69],"important":[27],"component":[28],"of":[29,32,54,91,109,119,134,154,183,193],"the":[30,45,52,55,61,83,95,106,130,135,146,152,165,172,176,181,184,191,194],"optimization":[31],"tree.":[34,85,187,201],"However,":[35],"many":[36],"previous":[37],"cost-sensitive":[38,74,96,185,199],"researches":[41],"focus":[42],"on":[43,164,171],"minimizing":[44,129],"misclassification":[46],"rate":[47],"removing":[49],"nodes":[50],"when":[51],"cost":[53,108,132],"pruned":[56],"less":[59],"than":[60],"original":[62],"one.":[63],"In":[64],"this":[65,92],"paper,":[66],"we":[67,139],"propose":[68],"effective":[70],"method":[71],"probabilistic":[79,142,177,195],"mechanism":[81,144,179,197],"There":[86],"are":[87,126],"two":[88],"major":[89],"contributions":[90],"paper.":[93],"Firstly,":[94],"built":[100],"to":[101,104,151],"make":[102],"predictions":[103],"minimize":[105],"total":[107,131],"test":[110],"costs":[111,114,155],"different":[113,117],"associated":[115],"with":[116,122],"types":[118],"misclassification.":[120],"Compared":[121],"existing":[123],"models,":[124],"leaves":[125],"labeled":[127],"by":[128],"instead":[133],"majority":[136],"class.":[137],"Secondly,":[138],"design":[140],"where":[145],"probability":[148],"related":[150],"change":[153],"around":[156],"pruning.":[157],"The":[158],"results":[160,189],"yield":[161],"worse":[162],"performance":[163,170,182],"training":[166],"set,":[167],"but":[168],"better":[169],"testing":[173],"set.":[174],"Therefore,":[175],"improves":[180],"Experimental":[188],"show":[190],"efficiency":[192]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2189093690","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2016,"cited_by_count":1}],"updated_date":"2024-12-07T08:21:06.662813","created_date":"2016-06-24"}