{"id":"https://openalex.org/W2962897807","doi":"https://doi.org/10.1109/icmlc.2013.6890744","title":"Infinite mixtures of multivariate Gaussian processes","display_name":"Infinite mixtures of multivariate Gaussian processes","publication_year":2013,"publication_date":"2013-07-01","ids":{"openalex":"https://openalex.org/W2962897807","doi":"https://doi.org/10.1109/icmlc.2013.6890744","mag":"2962897807"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmlc.2013.6890744","pdf_url":null,"source":{"id":"https://openalex.org/S4306419646","display_name":"International Conference on Machine Learning and Cybernetics","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://arxiv.org/pdf/1307.7028.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5047846625","display_name":"Shiliang Sun","orcid":"https://orcid.org/0000-0001-7069-3752"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"funder","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"None Shiliang Sun","raw_affiliation_strings":["Department of Computer Science and Technology, East China Normal University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, East China Normal University, Shanghai, China","institution_ids":["https://openalex.org/I66867065"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5047846625"],"corresponding_institution_ids":["https://openalex.org/I66867065"],"apc_list":null,"apc_paid":null,"fwci":0.964,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":9,"citation_normalized_percentile":{"value":0.696268,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"1011","last_page":"1016"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9528,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/dirichlet-process","display_name":"Dirichlet Process","score":0.47923902}],"concepts":[{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.76218355},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.69890416},{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.61852187},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.5901948},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.58779013},{"id":"https://openalex.org/C111350023","wikidata":"https://www.wikidata.org/wiki/Q1191869","display_name":"Markov chain Monte Carlo","level":3,"score":0.5852088},{"id":"https://openalex.org/C2781280628","wikidata":"https://www.wikidata.org/wiki/Q5280766","display_name":"Dirichlet process","level":3,"score":0.47923902},{"id":"https://openalex.org/C177384507","wikidata":"https://www.wikidata.org/wiki/Q1149000","display_name":"Multivariate normal distribution","level":3,"score":0.4647106},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45024183},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.42231756},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.40884942},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3967308},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35775706},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34953165},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.34266347},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33664238},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmlc.2013.6890744","pdf_url":null,"source":{"id":"https://openalex.org/S4306419646","display_name":"International Conference on Machine Learning and Cybernetics","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":null,"pdf_url":"https://arxiv.org/pdf/1307.7028.pdf","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":null,"pdf_url":"https://arxiv.org/pdf/1307.7028.pdf","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1746819321","https://openalex.org/W195465510","https://openalex.org/W1967687583","https://openalex.org/W1991515142","https://openalex.org/W1992530282","https://openalex.org/W2080972498","https://openalex.org/W2096772020","https://openalex.org/W2098949458","https://openalex.org/W2111683289","https://openalex.org/W2119595900","https://openalex.org/W2120636621","https://openalex.org/W2130031702","https://openalex.org/W2160299137","https://openalex.org/W2167503371","https://openalex.org/W4211049957","https://openalex.org/W4212863985","https://openalex.org/W4237780050"],"related_works":["https://openalex.org/W4386716613","https://openalex.org/W4293482264","https://openalex.org/W3194589442","https://openalex.org/W2972093345","https://openalex.org/W1992295166","https://openalex.org/W1854524123","https://openalex.org/W1833498382","https://openalex.org/W1614270630","https://openalex.org/W1605972624","https://openalex.org/W1602151161"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"a":[3],"new":[4],"model":[5,38],"called":[6],"the":[7,31,36,40,48,53,65,77,102,105],"infinite":[8],"mixture":[9,37,70],"of":[10,30,42,52,69,104],"multivariate":[11,33,54,99],"Gaussian":[12,34,55],"processes,":[13],"which":[14],"can":[15],"be":[16,73],"used":[17,88],"to":[18,24,63,72],"learn":[19],"vector-valued":[20],"functions":[21],"and":[22,46,80,91],"applied":[23],"multitask":[25],"learning.":[26],"As":[27],"an":[28],"extension":[29],"single":[32],"process,":[35],"has":[39],"advantages":[41],"modeling":[43],"multimodal":[44],"data":[45],"alleviating":[47],"computationally":[49],"cubic":[50],"complexity":[51],"process.":[56],"A":[57],"prior":[58],"Dirichlet":[59],"process":[60],"is":[61],"adopted":[62],"allow":[64],"(possibly":[66],"infinite)":[67],"number":[68],"components":[71],"automatically":[74],"inferred":[75],"from":[76],"training":[78],"data,":[79],"Markov":[81],"chain":[82],"Monte":[83],"Carlo":[84],"sampling":[85],"techniques":[86],"are":[87],"for":[89],"parameter":[90],"latent":[92],"variable":[93],"inference.":[94],"Preliminary":[95],"experimental":[96],"results":[97],"on":[98],"regression":[100],"show":[101],"feasibility":[103],"proposed":[106],"model.":[107]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2962897807","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1},{"year":2015,"cited_by_count":3},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":1}],"updated_date":"2025-04-19T03:18:01.501299","created_date":"2019-07-30"}