{"id":"https://openalex.org/W3132095740","doi":"https://doi.org/10.1109/icmla51294.2020.00148","title":"An Efficient Pipeline for Pruning Convolutional Neural Networks","display_name":"An Efficient Pipeline for Pruning Convolutional Neural Networks","publication_year":2020,"publication_date":"2020-12-01","ids":{"openalex":"https://openalex.org/W3132095740","doi":"https://doi.org/10.1109/icmla51294.2020.00148","mag":"3132095740"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla51294.2020.00148","pdf_url":null,"source":{"id":"https://openalex.org/S4363607906","display_name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100324623","display_name":"Chengcheng Li","orcid":"https://orcid.org/0000-0003-3507-8935"},"institutions":[{"id":"https://openalex.org/I75027704","display_name":"University of Tennessee at Knoxville","ror":"https://ror.org/020f3ap87","country_code":"US","type":"education","lineage":["https://openalex.org/I75027704"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chengcheng Li","raw_affiliation_strings":["Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA","institution_ids":["https://openalex.org/I75027704"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100338332","display_name":"Zi Wang","orcid":"https://orcid.org/0000-0002-5081-661X"},"institutions":[{"id":"https://openalex.org/I75027704","display_name":"University of Tennessee at Knoxville","ror":"https://ror.org/020f3ap87","country_code":"US","type":"education","lineage":["https://openalex.org/I75027704"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zi Wang","raw_affiliation_strings":["Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA","institution_ids":["https://openalex.org/I75027704"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5072730926","display_name":"Hairong Qi","orcid":"https://orcid.org/0000-0002-2693-5520"},"institutions":[{"id":"https://openalex.org/I75027704","display_name":"University of Tennessee at Knoxville","ror":"https://ror.org/020f3ap87","country_code":"US","type":"education","lineage":["https://openalex.org/I75027704"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hairong Qi","raw_affiliation_strings":["Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA","institution_ids":["https://openalex.org/I75027704"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.452,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.631488,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":"521","issue":null,"first_page":"907","last_page":"912"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.9023198},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.8162454},{"id":"https://openalex.org/keywords/learning-to-rank","display_name":"Learning to rank","score":0.5942678},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.5596708},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.51553},{"id":"https://openalex.org/keywords/clustering-analysis","display_name":"Clustering Analysis","score":0.511032}],"concepts":[{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.9023198},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.81842226},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.81827044},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.8162454},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80824506},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6874413},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.65123355},{"id":"https://openalex.org/C86037889","wikidata":"https://www.wikidata.org/wiki/Q4330127","display_name":"Learning to rank","level":3,"score":0.5942678},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.5596708},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5447494},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5127121},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.51027584},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41764674},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.31969714},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09155685},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.089892894},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla51294.2020.00148","pdf_url":null,"source":{"id":"https://openalex.org/S4363607906","display_name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W2050604187","https://openalex.org/W2108598243","https://openalex.org/W2114766824","https://openalex.org/W2119144962","https://openalex.org/W2120972216","https://openalex.org/W2123469553","https://openalex.org/W2194775991","https://openalex.org/W2285660444","https://openalex.org/W2495425901","https://openalex.org/W2533598788","https://openalex.org/W2582794520","https://openalex.org/W2604319603","https://openalex.org/W2612445135","https://openalex.org/W2707890836","https://openalex.org/W2754084392","https://openalex.org/W2775811337","https://openalex.org/W2896409484","https://openalex.org/W2899771611","https://openalex.org/W2919115771","https://openalex.org/W2928560789","https://openalex.org/W2929963893","https://openalex.org/W2945247689","https://openalex.org/W2950656546","https://openalex.org/W2951569836","https://openalex.org/W2962851801","https://openalex.org/W2962965870","https://openalex.org/W2962988160","https://openalex.org/W2963000224","https://openalex.org/W2963363373","https://openalex.org/W2963674932","https://openalex.org/W2963935227","https://openalex.org/W2964019666","https://openalex.org/W2964299589","https://openalex.org/W2969958526","https://openalex.org/W4232332215","https://openalex.org/W4285719527","https://openalex.org/W4297775537"],"related_works":["https://openalex.org/W4390446658","https://openalex.org/W4385565564","https://openalex.org/W3160516639","https://openalex.org/W3127142483","https://openalex.org/W2971071571","https://openalex.org/W2922169395","https://openalex.org/W2898073868","https://openalex.org/W2798835721","https://openalex.org/W2387658907","https://openalex.org/W2138488530"],"abstract_inverted_index":{"Network":[0],"pruning":[1,53,152],"has":[2],"achieved":[3],"significant":[4,92],"success":[5],"in":[6,35,91,94,101,138],"compressing":[7],"and":[8,21,31,39,74,120],"accelerating":[9],"CNNs.":[10],"However,":[11],"the":[12,29,37,56,60,65,70,109,123,131,143],"existing":[13],"three-step":[14,78],"iterative":[15],"pipeline,":[16],"which":[17],"includes":[18],"ranking,":[19],"pruning,":[20],"fine-tuning,":[22],"is":[23,114],"extremely":[24],"computationally":[25,48],"expensive":[26],"due":[27],"to":[28,68,83,108],"feed-forward":[30],"back-propagation":[32],"operations":[33],"conducted":[34],"both":[36],"ranking":[38],"fine-tuning":[40,66],"steps.":[41],"In":[42],"this":[43],"paper,":[44],"we":[45],"present":[46],"a":[47,77,84],"efficient":[49],"framework":[50],"for":[51,122],"structured":[52],"by":[54],"exploring":[55],"potential":[57],"of":[58,72,103],"leveraging":[59],"intermediate":[61],"results":[62,128],"generated":[63],"during":[64],"step":[67],"rank":[69],"importance":[71],"filters":[73],"thus":[75],"converting":[76],"pipeline":[79,86],"(with":[80,87],"precise":[81],"ranking)":[82],"two-step":[85],"coarse":[88],"ranking),":[89],"resulting":[90],"savings":[93],"computation":[95,139],"time":[96],"while":[97,141],"achieving":[98],"comparable":[99],"performance":[100,137],"terms":[102],"classification":[104,125],"accuracy":[105,145],"as":[106],"compared":[107],"state-of-the-art.":[110],"The":[111],"proposed":[112,132],"method":[113],"evaluated":[115],"with":[116],"various":[117],"benchmark":[118],"architectures":[119],"datasets":[121],"image":[124],"task.":[126],"Experimental":[127],"show":[129],"that":[130],"approach":[133,148],"can":[134],"achieve":[135],"superior":[136],"efficiency":[140],"maintaining":[142],"same":[144],"level.":[146],"Our":[147],"would":[149],"largely":[150],"facilitate":[151],"practice,":[153],"especially":[154],"on":[155],"resource-constrained":[156],"platforms.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3132095740","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":4}],"updated_date":"2024-11-22T00:45:14.074675","created_date":"2021-03-01"}