{"id":"https://openalex.org/W3007961274","doi":"https://doi.org/10.1109/icmla.2019.00082","title":"Word Embedding by Combining Resources and Integrating Techniques","display_name":"Word Embedding by Combining Resources and Integrating Techniques","publication_year":2019,"publication_date":"2019-12-01","ids":{"openalex":"https://openalex.org/W3007961274","doi":"https://doi.org/10.1109/icmla.2019.00082","mag":"3007961274"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla.2019.00082","pdf_url":null,"source":{"id":"https://openalex.org/S4363607906","display_name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042986645","display_name":"Kazem Qazanfari","orcid":null},"institutions":[{"id":"https://openalex.org/I193531525","display_name":"George Washington University","ror":"https://ror.org/00y4zzh67","country_code":"US","type":"education","lineage":["https://openalex.org/I193531525"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kazem Qazanfari","raw_affiliation_strings":["deparment of computer science, George Washington University, Washington DC, USA"],"affiliations":[{"raw_affiliation_string":"deparment of computer science, George Washington University, Washington DC, USA","institution_ids":["https://openalex.org/I193531525"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5111635384","display_name":"Abdou Youssef","orcid":null},"institutions":[{"id":"https://openalex.org/I193531525","display_name":"George Washington University","ror":"https://ror.org/00y4zzh67","country_code":"US","type":"education","lineage":["https://openalex.org/I193531525"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Abdou Youssef","raw_affiliation_strings":["deparment of computer science, George Washington University, Washington DC, USA"],"affiliations":[{"raw_affiliation_string":"deparment of computer science, George Washington University, Washington DC, USA","institution_ids":["https://openalex.org/I193531525"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.206,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.550522,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":"20","issue":null,"first_page":"438","last_page":"443"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/word-embedding","display_name":"Word embedding","score":0.68646836}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78774947},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.7540308},{"id":"https://openalex.org/C2777601683","wikidata":"https://www.wikidata.org/wiki/Q6499736","display_name":"Vocabulary","level":2,"score":0.75335306},{"id":"https://openalex.org/C2777462759","wikidata":"https://www.wikidata.org/wiki/Q18395344","display_name":"Word embedding","level":3,"score":0.68646836},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.6644404},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.62406087},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56385314},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.5576418},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.54003966},{"id":"https://openalex.org/C207685749","wikidata":"https://www.wikidata.org/wiki/Q2088941","display_name":"Domain knowledge","level":2,"score":0.42755076},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.32322258},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11142051},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla.2019.00082","pdf_url":null,"source":{"id":"https://openalex.org/S4363607906","display_name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W1614298861","https://openalex.org/W2028175314","https://openalex.org/W2053921957","https://openalex.org/W2096152098","https://openalex.org/W2113459411","https://openalex.org/W2250539671","https://openalex.org/W2252211741","https://openalex.org/W2493916176","https://openalex.org/W2794557536","https://openalex.org/W2896457183","https://openalex.org/W2949380545","https://openalex.org/W2962739339","https://openalex.org/W2963918774"],"related_works":["https://openalex.org/W4323981018","https://openalex.org/W4321320117","https://openalex.org/W3172706523","https://openalex.org/W3158961393","https://openalex.org/W3146034405","https://openalex.org/W3086845375","https://openalex.org/W2970484573","https://openalex.org/W2949267551","https://openalex.org/W2567035470","https://openalex.org/W2250717533"],"abstract_inverted_index":{"In":[0,57],"a":[1,48,132,168,174],"typical":[2],"text":[3],"mining":[4],"problem,":[5,45],"the":[6,9,18,22,31,43,54,60,69,76,84,98,101,122,161,184,189,195,204,209,213],"distribution":[7],"of":[8,28,33,38,40,71,78,88,100,124,126,143,171,183,198,223],"domain-specific":[10],"repository":[11,55],"data":[12],"does":[13,50],"not":[14,51],"fully":[15],"capture":[16],"all":[17],"problem's":[19],"concepts":[20],"in":[21,53,63,220],"real-world.":[23],"This":[24,86],"issue,":[25],"termed":[26],"inadequacy":[27,39,125],"knowledge,":[29],"decreases":[30],"accuracy":[32,99],"generated":[34,102],"models.":[35],"One":[36],"aspect":[37],"knowledge":[41,127,144,172],"is":[42,65,90,95,106,114,128,186],"out-of-vocabulary":[44,61],"i.e.":[46,75],"when":[47,110],"word":[49,80,149,176],"appear":[52],"data.":[56],"this":[58],"paper,":[59],"issue":[62,123],"GloVe":[64,89,111],"addressed":[66,129],"by":[67,104,130],"changing":[68],"form":[70],"fed":[72],"training":[73,119],"data,":[74],"n-grams":[77],"each":[79],"are":[81],"substituted":[82],"for":[83,117],"word.":[85],"version":[87],"called":[91],"here":[92],"C-GloVe.":[93],"It":[94],"shown":[96],"that":[97,160,208],"models":[103],"C-GloVe":[105],"mostly":[107],"higher":[108,165,216],"than":[109,167,218],"or":[112,215],"FastText":[113],"used,":[115],"especially":[116,179],"smaller":[118],"sets.":[120],"Also,":[121,200],"proposing":[131],"method":[133,211],"to":[134,146],"integrate":[135],"local":[136,190],"(i.e.":[137],"domain":[138],"specific)":[139],"and":[140,145,173,192],"universal":[141,196],"sources":[142],"combine":[147],"different":[148,157],"embedding":[150,177],"algorithms.":[151],"Our":[152],"experimental":[153,201],"results":[154,202],"on":[155,188,194,203],"three":[156],"tasks":[158],"show":[159,207],"proposed":[162,210],"methods":[163],"yield":[164],"performance":[166],"standalone":[169,175],"source":[170,191,197],"algorithm,":[178],"if":[180],"one":[181],"algorithm":[182],"combination":[185],"trained":[187],"another":[193],"knowledge.":[199],"classification":[205,225],"task":[206],"obtained":[212],"same":[214],"F1-score":[217],"BERT":[219],"four":[221],"out":[222],"five":[224],"problems.":[226]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3007961274","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-05T15:16:10.183589","created_date":"2020-03-06"}