{"id":"https://openalex.org/W2782941489","doi":"https://doi.org/10.1109/icmla.2017.0-182","title":"Anomaly Prediction Based on k-Means Clustering for Memory-Constrained Embedded Devices","display_name":"Anomaly Prediction Based on k-Means Clustering for Memory-Constrained Embedded Devices","publication_year":2017,"publication_date":"2017-12-01","ids":{"openalex":"https://openalex.org/W2782941489","doi":"https://doi.org/10.1109/icmla.2017.0-182","mag":"2782941489"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla.2017.0-182","pdf_url":null,"source":{"id":"https://openalex.org/S4363607906","display_name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076880513","display_name":"Yuto Kitagawa","orcid":null},"institutions":[{"id":"https://openalex.org/I98285908","display_name":"Osaka University","ror":"https://ror.org/035t8zc32","country_code":"JP","type":"education","lineage":["https://openalex.org/I98285908"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yuto Kitagawa","raw_affiliation_strings":["Graduate School of Engineering Science, Osaka University"],"affiliations":[{"raw_affiliation_string":"Graduate School of Engineering Science, Osaka University","institution_ids":["https://openalex.org/I98285908"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006643300","display_name":"Tasuku Ishigoka","orcid":null},"institutions":[{"id":"https://openalex.org/I65143321","display_name":"Hitachi (Japan)","ror":"https://ror.org/02exqgm79","country_code":"JP","type":"company","lineage":["https://openalex.org/I65143321"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Tasuku Ishigoka","raw_affiliation_strings":["Center for Technology Innovation-Controls Research and Development Group, Hitachi Ltd"],"affiliations":[{"raw_affiliation_string":"Center for Technology Innovation-Controls Research and Development Group, Hitachi Ltd","institution_ids":["https://openalex.org/I65143321"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5022413623","display_name":"Takuya Azumi","orcid":null},"institutions":[{"id":"https://openalex.org/I98285908","display_name":"Osaka University","ror":"https://ror.org/035t8zc32","country_code":"JP","type":"education","lineage":["https://openalex.org/I98285908"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takuya Azumi","raw_affiliation_strings":["Graduate School of Engineering Science, Osaka University"],"affiliations":[{"raw_affiliation_string":"Graduate School of Engineering Science, Osaka University","institution_ids":["https://openalex.org/I98285908"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.156,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.474686,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"26","last_page":"33"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9924,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11241","display_name":"Advanced Malware Detection Techniques","score":0.9872,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/data-stream-clustering","display_name":"Data stream clustering","score":0.68242455},{"id":"https://openalex.org/keywords/anomaly-detection","display_name":"Anomaly Detection","score":0.566656},{"id":"https://openalex.org/keywords/outlier-detection","display_name":"Outlier Detection","score":0.549725},{"id":"https://openalex.org/keywords/clustering-high-dimensional-data","display_name":"Clustering high-dimensional data","score":0.4203521},{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.41971624}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.9253719},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73078734},{"id":"https://openalex.org/C33704608","wikidata":"https://www.wikidata.org/wiki/Q5014717","display_name":"CURE data clustering algorithm","level":4,"score":0.7264049},{"id":"https://openalex.org/C193143536","wikidata":"https://www.wikidata.org/wiki/Q5227360","display_name":"Data stream clustering","level":5,"score":0.68242455},{"id":"https://openalex.org/C94641424","wikidata":"https://www.wikidata.org/wiki/Q5172845","display_name":"Correlation clustering","level":3,"score":0.6099912},{"id":"https://openalex.org/C104047586","wikidata":"https://www.wikidata.org/wiki/Q5033439","display_name":"Canopy clustering algorithm","level":4,"score":0.60888135},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.55943716},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.44874096},{"id":"https://openalex.org/C17212007","wikidata":"https://www.wikidata.org/wiki/Q5511111","display_name":"Fuzzy clustering","level":3,"score":0.434675},{"id":"https://openalex.org/C184509293","wikidata":"https://www.wikidata.org/wiki/Q5136711","display_name":"Clustering high-dimensional data","level":3,"score":0.4203521},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.41971624},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39973155},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37130538},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla.2017.0-182","pdf_url":null,"source":{"id":"https://openalex.org/S4363607906","display_name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1552828154","https://openalex.org/W1861929079","https://openalex.org/W1938740620","https://openalex.org/W2002114286","https://openalex.org/W2073459066","https://openalex.org/W2134274113","https://openalex.org/W2150593711","https://openalex.org/W2277255517","https://openalex.org/W2281706614","https://openalex.org/W2295174985","https://openalex.org/W2343841005","https://openalex.org/W2395916081","https://openalex.org/W2516497858","https://openalex.org/W2528640440","https://openalex.org/W2530303114","https://openalex.org/W2555541806","https://openalex.org/W2592124219"],"related_works":["https://openalex.org/W4301002638","https://openalex.org/W4253632195","https://openalex.org/W3186815950","https://openalex.org/W3124860551","https://openalex.org/W3088133960","https://openalex.org/W2590117803","https://openalex.org/W2393707058","https://openalex.org/W2371010743","https://openalex.org/W2163563073","https://openalex.org/W1987613674"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"an":[3],"anomaly":[4,100,144],"prediction":[5,101,145],"method":[6,80,94,122],"based":[7,82],"on":[8,83],"k-means":[9,50,67,78,85,92,117,129,138,149],"clustering":[10,39,51,68,71,79,86,93,130,139],"that":[11,111],"assumes":[12],"embedded":[13,57],"devices":[14,58],"with":[15,59],"memory":[16,46,61,133],"constraints":[17],"to":[18,34,48,69,127],"predict":[19,35,124],"control":[20,28],"system":[21,29],"anomalies.":[22,36],"With":[23],"this":[24],"method,":[25,52],"by":[26,116],"checking":[27],"behavior,":[30],"it":[31],"is":[32,40,54,81],"possible":[33],"However,":[37],"continuing":[38],"difficult":[41],"because":[42],"data":[43,97,105],"accumulate":[44],"in":[45],"similar":[47,126],"existing":[49,147],"which":[53],"problematic":[55],"for":[56,72,99],"low":[60],"capacity.":[62],"Therefore,":[63],"we":[64],"also":[65],"propose":[66],"continue":[70],"infinite":[73],"stream":[74],"data.":[75],"The":[76,90],"proposed":[77,91,121,137],"online":[84,148],"of":[87,143],"sequential":[88],"processing.":[89],"only":[95],"stores":[96],"required":[98],"and":[102,119],"releases":[103],"other":[104],"from":[106],"memory.":[107],"Experimental":[108],"results":[109,142],"show":[110],"anomalies":[112,125],"can":[113,123],"be":[114],"predicted":[115],"clustering,":[118],"the":[120,136],"standard":[128],"while":[131],"reducing":[132],"consumption.":[134],"Moreover,":[135],"demonstrates":[140],"better":[141],"than":[146],"clustering.":[150]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2782941489","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2024-12-05T09:54:11.819811","created_date":"2018-01-26"}