{"id":"https://openalex.org/W2584959338","doi":"https://doi.org/10.1109/icmla.2016.0046","title":"Advanced Image Classification Using Wavelets and Convolutional Neural Networks","display_name":"Advanced Image Classification Using Wavelets and Convolutional Neural Networks","publication_year":2016,"publication_date":"2016-12-01","ids":{"openalex":"https://openalex.org/W2584959338","doi":"https://doi.org/10.1109/icmla.2016.0046","mag":"2584959338"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla.2016.0046","pdf_url":null,"source":{"id":"https://openalex.org/S4363607906","display_name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061558169","display_name":"T. Williams","orcid":"https://orcid.org/0000-0002-0208-3431"},"institutions":[{"id":"https://openalex.org/I35777872","display_name":"North Carolina Agricultural and Technical State University","ror":"https://ror.org/02aze4h65","country_code":"US","type":"education","lineage":["https://openalex.org/I35777872"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Travis Williams","raw_affiliation_strings":["Department of Electrical & Computer Engineering, North Carolina A&T State University, Greensboro, NC, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical & Computer Engineering, North Carolina A&T State University, Greensboro, NC, USA","institution_ids":["https://openalex.org/I35777872"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005873257","display_name":"Robert Li","orcid":null},"institutions":[{"id":"https://openalex.org/I35777872","display_name":"North Carolina Agricultural and Technical State University","ror":"https://ror.org/02aze4h65","country_code":"US","type":"education","lineage":["https://openalex.org/I35777872"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Robert Li","raw_affiliation_strings":["Department of Electrical & Computer Engineering, North Carolina A&T State University, Greensboro, NC, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical & Computer Engineering, North Carolina A&T State University, Greensboro, NC, USA","institution_ids":["https://openalex.org/I35777872"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.572,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":61,"citation_normalized_percentile":{"value":0.927764,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":"233","last_page":"239"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9912,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.7797246},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.6361754},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5815925},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.44117096},{"id":"https://openalex.org/keywords/contourlet","display_name":"Contourlet","score":0.43408197}],"concepts":[{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.7797246},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7692412},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7589347},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7086733},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6756415},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.6361754},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.6145592},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5815925},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.5253448},{"id":"https://openalex.org/C196216189","wikidata":"https://www.wikidata.org/wiki/Q2867","display_name":"Wavelet transform","level":3,"score":0.50278187},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.47913238},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4521969},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.44117096},{"id":"https://openalex.org/C20479862","wikidata":"https://www.wikidata.org/wiki/Q5165589","display_name":"Contourlet","level":4,"score":0.43408197},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.40573704},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32143444},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.07859805},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla.2016.0046","pdf_url":null,"source":{"id":"https://openalex.org/S4363607906","display_name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W114517082","https://openalex.org/W1489213177","https://openalex.org/W1512748702","https://openalex.org/W1522301498","https://openalex.org/W1604952778","https://openalex.org/W1653130573","https://openalex.org/W1658679052","https://openalex.org/W1836465849","https://openalex.org/W1840106123","https://openalex.org/W1963882359","https://openalex.org/W1998399571","https://openalex.org/W2003059629","https://openalex.org/W2006434287","https://openalex.org/W2035424729","https://openalex.org/W2045732268","https://openalex.org/W2112796928","https://openalex.org/W2132984323","https://openalex.org/W2145094598","https://openalex.org/W2150341604","https://openalex.org/W2164117960","https://openalex.org/W2182924040","https://openalex.org/W2183112036","https://openalex.org/W2476606022","https://openalex.org/W2953066166","https://openalex.org/W2963574257","https://openalex.org/W2964006742","https://openalex.org/W2964121744","https://openalex.org/W2997574889","https://openalex.org/W3118608800","https://openalex.org/W4205947740","https://openalex.org/W4256555983","https://openalex.org/W592963477"],"related_works":["https://openalex.org/W4313444753","https://openalex.org/W4296978181","https://openalex.org/W4281672036","https://openalex.org/W4248172957","https://openalex.org/W4230582276","https://openalex.org/W415651045","https://openalex.org/W3087569769","https://openalex.org/W2937381246","https://openalex.org/W2912987408","https://openalex.org/W2049573171"],"abstract_inverted_index":{"Image":[0],"classification":[1,37],"is":[2,16],"a":[3,150],"vital":[4],"technology":[5],"many":[6],"people":[7],"in":[8,18,61,67,77,127,130,153],"all":[9],"arenas":[10],"of":[11,21,28,112],"human":[12],"life":[13],"utilize.":[14],"It":[15],"pervasive":[17],"every":[19],"facet":[20],"the":[22,39,62,68,75,78,89,95,113,122,131,135],"social,":[23],"economic,":[24],"and":[25,44,65,85,116,120,142],"corporate":[26],"spheres":[27],"influence,":[29],"worldwide.":[30],"This":[31,50],"need":[32,40],"for":[33,41],"more":[34],"accurate,":[35],"detail-oriented":[36],"increases":[38],"modifications,":[42],"adaptations,":[43],"innovations":[45],"to":[46,57,81,88,107,138],"Deep":[47],"learning":[48,102],"algorithms.":[49],"paper":[51],"uses":[52],"Convolutional":[53],"Neural":[54],"Networks":[55],"(CNN)":[56],"classify":[58],"handwritten":[59],"digits":[60],"MNIST":[63],"database,":[64],"scenes":[66],"CIFAR-10":[69],"database.":[70],"Our":[71],"proposed":[72,136],"method":[73],"preprocesses":[74],"data":[76],"wavelet":[79],"domain":[80,91,140],"attain":[82],"greater":[83],"accuracy":[84],"comparable":[86],"efficiency":[87],"spatial":[90,139],"processing.":[92],"By":[93],"separating":[94],"image":[96],"into":[97],"different":[98],"subbands,":[99],"important":[100],"feature":[101,124],"occurs":[103],"over":[104],"varying":[105],"low":[106,115],"high":[108,117],"frequencies.":[109],"The":[110],"fusion":[111],"learned":[114],"frequency":[118],"features,":[119],"processing":[121],"combined":[123],"mapping":[125],"results":[126],"an":[128],"increase":[129,152],"detection":[132],"accuracy.":[133,154],"Comparing":[134],"methods":[137],"CNN":[141],"Stacked":[143],"Denoising":[144],"Autoencoder":[145],"(SDA),":[146],"experimental":[147],"findings":[148],"reveal":[149],"substantial":[151]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2584959338","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":13},{"year":2021,"cited_by_count":9},{"year":2020,"cited_by_count":9},{"year":2019,"cited_by_count":13},{"year":2018,"cited_by_count":4},{"year":2017,"cited_by_count":2}],"updated_date":"2024-12-29T17:24:40.829607","created_date":"2017-02-10"}