{"id":"https://openalex.org/W2083148906","doi":"https://doi.org/10.1109/icmla.2013.139","title":"Two-Level Clustering towards Unsupervised Discovery of Acoustic Classes","display_name":"Two-Level Clustering towards Unsupervised Discovery of Acoustic Classes","publication_year":2013,"publication_date":"2013-12-01","ids":{"openalex":"https://openalex.org/W2083148906","doi":"https://doi.org/10.1109/icmla.2013.139","mag":"2083148906"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla.2013.139","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037082173","display_name":"Ciro Gracia Pons","orcid":null},"institutions":[{"id":"https://openalex.org/I170486558","display_name":"Universitat Pompeu Fabra","ror":"https://ror.org/04n0g0b29","country_code":"ES","type":"funder","lineage":["https://openalex.org/I170486558"]}],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Ciro Gracia Pons","raw_affiliation_strings":["[Dept. of Inf. & Commun. Technol., Univ. Pompeu Fabra, Barcelona, Spain]"],"affiliations":[{"raw_affiliation_string":"[Dept. of Inf. & Commun. Technol., Univ. Pompeu Fabra, Barcelona, Spain]","institution_ids":["https://openalex.org/I170486558"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051383020","display_name":"Xavier Anguera","orcid":"https://orcid.org/0000-0001-8659-3991"},"institutions":[{"id":"https://openalex.org/I4210134591","display_name":"Telefonica Research and Development","ror":"https://ror.org/03qgzzb04","country_code":"ES","type":"company","lineage":["https://openalex.org/I4210097190","https://openalex.org/I4210134591"]}],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Xavier Anguera","raw_affiliation_strings":["Telefonica Research; Barcelona, Spain"],"affiliations":[{"raw_affiliation_string":"Telefonica Research; Barcelona, Spain","institution_ids":["https://openalex.org/I4210134591"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005841775","display_name":"Xavier Binefa","orcid":"https://orcid.org/0000-0002-4324-9952"},"institutions":[{"id":"https://openalex.org/I170486558","display_name":"Universitat Pompeu Fabra","ror":"https://ror.org/04n0g0b29","country_code":"ES","type":"funder","lineage":["https://openalex.org/I170486558"]}],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Xavier Binefa","raw_affiliation_strings":["[Dept. of Inf. & Commun. Technol., Univ. Pompeu Fabra, Barcelona, Spain]"],"affiliations":[{"raw_affiliation_string":"[Dept. of Inf. & Commun. Technol., Univ. Pompeu Fabra, Barcelona, Spain]","institution_ids":["https://openalex.org/I170486558"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.17318,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":72},"biblio":{"volume":null,"issue":null,"first_page":"299","last_page":"302"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.8516898},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7053499},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.60879123},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5593904},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.45523313},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.43774793},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.42876354},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42088783},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla.2013.139","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.7,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1815792","https://openalex.org/W1902027874","https://openalex.org/W1954463725","https://openalex.org/W1975126845","https://openalex.org/W202250664","https://openalex.org/W2028080169","https://openalex.org/W2099415988","https://openalex.org/W2126203737","https://openalex.org/W2130525565","https://openalex.org/W2134731454","https://openalex.org/W2171019095","https://openalex.org/W2403207842"],"related_works":["https://openalex.org/W4310225030","https://openalex.org/W4298130764","https://openalex.org/W2804364458","https://openalex.org/W2785900585","https://openalex.org/W2609066826","https://openalex.org/W2490303674","https://openalex.org/W2402761219","https://openalex.org/W2353730437","https://openalex.org/W2132641928","https://openalex.org/W2090259340"],"abstract_inverted_index":{"In":[0,69,95],"this":[1,96],"paper":[2,97],"we":[3,73,98],"focus":[4],"on":[5,22],"unsupervised":[6],"discovering":[7],"of":[8,26,31,44,65,83,87,112,137],"acoustic":[9,29,46,53,66,76,150],"classes":[10],"suitable":[11],"for":[12,39],"use":[13,74],"in":[14,35,49,58,152],"pattern":[15],"recognition":[16],"applications.":[17],"Our":[18],"approach":[19,121],"is":[20,55],"based":[21],"a":[23,50,62,70,80],"two-level":[24,120],"clustering":[25,72,102],"an":[27],"initial":[28],"segmentation":[30,77],"the":[32,52,75,88,92,118,123,135,138,143,148],"audio":[33],"data":[34],"order":[36,59],"to":[37,60,78,104,146],"allow":[38],"discovery":[40],"and":[41,127],"correct":[42],"modeling":[43],"complex":[45],"classes.":[47],"Initially,":[48],"first-level,":[51],"space":[54],"densely":[56],"clustered":[57],"provide":[61],"first":[63],"layer":[64],"variance":[67],"reduction.":[68],"second-level":[71],"infer":[79],"smaller":[81],"number":[82],"super-clusters":[84,106],"taking":[85],"advantage":[86],"intra-segment":[89],"relationships":[90],"between":[91,125],"first-level":[93,113],"clusters.":[94,114],"compare":[99],"three":[100],"possible":[101],"methods":[103],"obtain":[105],"as":[107],"sub-sets":[108],"or":[109],"linear":[110],"combinations":[111],"Results":[115],"indicate":[116],"that":[117],"proposed":[119],"improves":[122],"balance":[124],"Purity":[126,129],"inverse":[128],"evaluation":[130],"measures":[131],"while":[132],"significantly":[133],"improving":[134],"stability":[136],"transcriptions":[139],"obtained":[140],"when":[141],"using":[142],"resulting":[144],"models":[145],"transcribe":[147],"same":[149],"events":[151],"different":[153],"spoken":[154],"utterances.":[155]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2083148906","counts_by_year":[{"year":2018,"cited_by_count":1}],"updated_date":"2025-03-30T07:56:00.381631","created_date":"2016-06-24"}