{"id":"https://openalex.org/W2150495207","doi":"https://doi.org/10.1109/icmla.2008.122","title":"Decision Fusion of Machine Learning Models to Predict Radiotherapy-Induced Lung Pneumonitis","display_name":"Decision Fusion of Machine Learning Models to Predict Radiotherapy-Induced Lung Pneumonitis","publication_year":2008,"publication_date":"2008-01-01","ids":{"openalex":"https://openalex.org/W2150495207","doi":"https://doi.org/10.1109/icmla.2008.122","mag":"2150495207"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla.2008.122","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103460162","display_name":"Shiva K. Das","orcid":null},"institutions":[{"id":"https://openalex.org/I4210126298","display_name":"Duke Medical Center","ror":"https://ror.org/03njmea73","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I4210126298","https://openalex.org/I4210144876"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shiva K. Das","raw_affiliation_strings":["Department of Radiation Oncology, Duke University Medical Center, USA"],"affiliations":[{"raw_affiliation_string":"Department of Radiation Oncology, Duke University Medical Center, USA","institution_ids":["https://openalex.org/I4210126298"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102827652","display_name":"Shifeng Chen","orcid":"https://orcid.org/0000-0002-3858-0309"},"institutions":[{"id":"https://openalex.org/I4210126298","display_name":"Duke Medical Center","ror":"https://ror.org/03njmea73","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I4210126298","https://openalex.org/I4210144876"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shifeng Chen","raw_affiliation_strings":["Department of Radiation Oncology, Duke University Medical Center, USA"],"affiliations":[{"raw_affiliation_string":"Department of Radiation Oncology, Duke University Medical Center, USA","institution_ids":["https://openalex.org/I4210126298"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026159944","display_name":"Joseph O. Deasy","orcid":"https://orcid.org/0000-0002-9437-266X"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Joseph O. Deasy","raw_affiliation_strings":["Department of Radiation Oncology, Washington University School of Medicine, USA"],"affiliations":[{"raw_affiliation_string":"Department of Radiation Oncology, Washington University School of Medicine, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060861535","display_name":"S. Zhou","orcid":"https://orcid.org/0000-0002-7517-9653"},"institutions":[{"id":"https://openalex.org/I4210126298","display_name":"Duke Medical Center","ror":"https://ror.org/03njmea73","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I4210126298","https://openalex.org/I4210144876"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sumin Zhou","raw_affiliation_strings":["Department of Radiation Oncology, Duke University Medical Center, USA"],"affiliations":[{"raw_affiliation_string":"Department of Radiation Oncology, Duke University Medical Center, USA","institution_ids":["https://openalex.org/I4210126298"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100651695","display_name":"F Yin","orcid":"https://orcid.org/0000-0002-2025-4740"},"institutions":[{"id":"https://openalex.org/I4210126298","display_name":"Duke Medical Center","ror":"https://ror.org/03njmea73","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I4210126298","https://openalex.org/I4210144876"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Fang-Fang Yin","raw_affiliation_strings":["Department of Radiation Oncology, Duke University Medical Center, USA"],"affiliations":[{"raw_affiliation_string":"Department of Radiation Oncology, Duke University Medical Center, USA","institution_ids":["https://openalex.org/I4210126298"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5085651347","display_name":"Lawrence B. Marks","orcid":"https://orcid.org/0000-0001-8832-3303"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Lawrence B. Marks","raw_affiliation_strings":["Department of Radiation Oncology, University of North Carolina School of Medicine, USA"],"affiliations":[{"raw_affiliation_string":"Department of Radiation Oncology, University of North Carolina School of Medicine, USA","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.867,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.879271,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"545","last_page":"550"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10358","display_name":"Advanced Radiotherapy Techniques","score":0.9761,"subfield":{"id":"https://openalex.org/subfields/3108","display_name":"Radiation"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10358","display_name":"Advanced Radiotherapy Techniques","score":0.9761,"subfield":{"id":"https://openalex.org/subfields/3108","display_name":"Radiation"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9678,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11216","display_name":"Radiation Detection and Scintillator Technologies","score":0.9626,"subfield":{"id":"https://openalex.org/subfields/3108","display_name":"Radiation"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6660265},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.66192544},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.6410856},{"id":"https://openalex.org/C509974204","wikidata":"https://www.wikidata.org/wiki/Q180507","display_name":"Radiation therapy","level":2,"score":0.62673235},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5929829},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5298329},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.52974045},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.51196206},{"id":"https://openalex.org/C58471807","wikidata":"https://www.wikidata.org/wiki/Q327120","display_name":"Receiver operating characteristic","level":2,"score":0.44604012},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.41559866},{"id":"https://openalex.org/C158525013","wikidata":"https://www.wikidata.org/wiki/Q2593739","display_name":"Fusion","level":2,"score":0.41463286},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.15613681},{"id":"https://openalex.org/C141071460","wikidata":"https://www.wikidata.org/wiki/Q40821","display_name":"Surgery","level":1,"score":0.07275063},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla.2008.122","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Gender equality","id":"https://metadata.un.org/sdg/5","score":0.45}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1554944419","https://openalex.org/W1964677763","https://openalex.org/W1970953269","https://openalex.org/W1982767760","https://openalex.org/W1993732771","https://openalex.org/W2018662705","https://openalex.org/W2060341198","https://openalex.org/W2078333952","https://openalex.org/W2079633981","https://openalex.org/W2086392018","https://openalex.org/W2107391292","https://openalex.org/W2107451631","https://openalex.org/W2109565719","https://openalex.org/W2114667018","https://openalex.org/W2145272969","https://openalex.org/W2158275940","https://openalex.org/W2160767978","https://openalex.org/W2168184228","https://openalex.org/W2171033594"],"related_works":["https://openalex.org/W4388550696","https://openalex.org/W4386259002","https://openalex.org/W4385649027","https://openalex.org/W4366990902","https://openalex.org/W4321636153","https://openalex.org/W4317732970","https://openalex.org/W4313289487","https://openalex.org/W3193043704","https://openalex.org/W3171520305","https://openalex.org/W1546989560"],"abstract_inverted_index":{"Combining":[0],"different":[1,50,67],"machine":[2,68,204],"learning":[3,69,205],"models":[4,24,51,70,156,174],"(decision":[5],"fusion)":[6],"has":[7],"been":[8],"shown":[9],"to":[10,25,82,182,193],"be":[11,43],"an":[12],"effective":[13],"method":[14],"for":[15,106,133,145,188,203],"estimating":[16],"the":[17,23,49,63,84,101,118,122,140,146,154,169],"underlying":[18],"physical":[19],"mechanism":[20],"by":[21,97],"allowing":[22],"reinforce":[26],"each":[27,35,107],"other":[28,36],"when":[29,37],"consensus":[30,170],"exists,":[31],"or,":[32],"conversely,":[33],"negate":[34],"there":[38],"is":[39],"no":[40],"consensus.":[41],"To":[42,113],"effective,":[44],"decision":[45],"fusion":[46,163],"requires":[47],"that":[48],"provide":[52],"some":[53],"degree":[54],"of":[55,65,86,100],"complementary":[56],"information.":[57],"In":[58],"this":[59],"work,":[60],"we":[61],"fuse":[62],"results":[64,149,199],"four":[66,111,173],"(Boosted":[71],"Decision":[72],"Trees,":[73],"Neural":[74],"Networks,":[75],"Support":[76],"Vector":[77],"Machines,":[78],"Self":[79],"Organizing":[80],"Maps)":[81],"predict":[83],"risk":[85],"lung":[87],"pneumonitis":[88,178],"in":[89,120,175,206],"patients":[90],"undergoing":[91],"thoracic":[92],"radiotherapy.":[93],"Fusion":[94],"was":[95,125,129,150],"achieved":[96],"simple":[98],"averaging":[99],"10-fold":[102,127],"cross":[103],"validated":[104],"predictions":[105],"patient":[108],"from":[109],"all":[110,172],"models.":[112],"reduce":[114],"prediction":[115],"dependence":[116],"on":[117],"manner":[119],"which":[121],"data":[123,135],"set":[124],"split,":[126],"cross-validation":[128],"repeated":[130],"100":[131],"times":[132],"random":[134],"splitting.":[136],"The":[137,162,198],"area":[138],"under":[139],"receiver":[141],"operating":[142],"characteristics":[143],"curve":[144],"fused":[147],"cross-validated":[148],"0.79,":[151],"higher":[152],"than":[153],"individual":[155],"and":[157,195],"with":[158],"(generally)":[159],"lower":[160],"variance.":[161],"extracted":[164],"three":[165],"important":[166],"features":[167],"as":[168],"among":[171],"predicting":[176],"radiation":[177],"risk:":[179],"chemotherapy":[180],"prior":[181],"radiotherapy,":[183],"equivalent":[184],"Uniform":[185],"Dose":[186],"(EUD)":[187],"exponent":[189],"a":[190],"=":[191],"1.2":[192],"3,":[194],"female":[196],"gender.":[197],"show":[200],"great":[201],"promise":[202],"radiotherapy":[207],"outcomes":[208],"modeling.":[209]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2150495207","counts_by_year":[{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-14T06:27:25.698526","created_date":"2016-06-24"}