{"id":"https://openalex.org/W2145204877","doi":"https://doi.org/10.1109/icmla.2008.118","title":"A Weighted Distance Measure for Calculating the Similarity of Sparsely Distributed Trajectories","display_name":"A Weighted Distance Measure for Calculating the Similarity of Sparsely Distributed Trajectories","publication_year":2008,"publication_date":"2008-01-01","ids":{"openalex":"https://openalex.org/W2145204877","doi":"https://doi.org/10.1109/icmla.2008.118","mag":"2145204877"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla.2008.118","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069221764","display_name":"Pekka Siirtola","orcid":"https://orcid.org/0000-0002-5995-5421"},"institutions":[{"id":"https://openalex.org/I98381234","display_name":"University of Oulu","ror":"https://ror.org/03yj89h83","country_code":"FI","type":"funder","lineage":["https://openalex.org/I98381234"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Pekka Siirtola","raw_affiliation_strings":["Dept. of Electr. & Inf. Eng., Univ. of Oulu, Oulu, Finland#TAB#"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. & Inf. Eng., Univ. of Oulu, Oulu, Finland#TAB#","institution_ids":["https://openalex.org/I98381234"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053068969","display_name":"Perttu Laurinen","orcid":null},"institutions":[{"id":"https://openalex.org/I98381234","display_name":"University of Oulu","ror":"https://ror.org/03yj89h83","country_code":"FI","type":"funder","lineage":["https://openalex.org/I98381234"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Perttu Laurinen","raw_affiliation_strings":["Dept. of Electr. & Inf. Eng., Univ. of Oulu, Oulu, Finland#TAB#"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. & Inf. Eng., Univ. of Oulu, Oulu, Finland#TAB#","institution_ids":["https://openalex.org/I98381234"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5070507098","display_name":"Juha R\u00f6ning","orcid":"https://orcid.org/0000-0001-9993-8602"},"institutions":[{"id":"https://openalex.org/I98381234","display_name":"University of Oulu","ror":"https://ror.org/03yj89h83","country_code":"FI","type":"funder","lineage":["https://openalex.org/I98381234"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Juha R\u00f6ning","raw_affiliation_strings":["Dept. of Electr. & Inf. Eng., Univ. of Oulu, Oulu, Finland#TAB#"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. & Inf. Eng., Univ. of Oulu, Oulu, Finland#TAB#","institution_ids":["https://openalex.org/I98381234"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.569,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.472983,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"802","last_page":"807"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.986,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9697,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/equidistant","display_name":"Equidistant","score":0.9319155},{"id":"https://openalex.org/keywords/dynamic-time-warping","display_name":"Dynamic Time Warping","score":0.77821374},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.75491357},{"id":"https://openalex.org/keywords/similarity-measure","display_name":"Similarity measure","score":0.7208997},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6799892},{"id":"https://openalex.org/keywords/image-warping","display_name":"Image warping","score":0.48313877},{"id":"https://openalex.org/keywords/data-point","display_name":"Data point","score":0.4109525}],"concepts":[{"id":"https://openalex.org/C158245278","wikidata":"https://www.wikidata.org/wiki/Q4386982","display_name":"Equidistant","level":2,"score":0.9319155},{"id":"https://openalex.org/C88516994","wikidata":"https://www.wikidata.org/wiki/Q1268863","display_name":"Dynamic time warping","level":2,"score":0.77821374},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.75491357},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.75354105},{"id":"https://openalex.org/C2776517306","wikidata":"https://www.wikidata.org/wiki/Q29017317","display_name":"Similarity measure","level":2,"score":0.7208997},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6799892},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6244376},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5127738},{"id":"https://openalex.org/C157202957","wikidata":"https://www.wikidata.org/wiki/Q1659609","display_name":"Image warping","level":2,"score":0.48313877},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.47914857},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.42183882},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4184929},{"id":"https://openalex.org/C21080849","wikidata":"https://www.wikidata.org/wiki/Q13611879","display_name":"Data point","level":2,"score":0.4109525},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3555522},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.10826695},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.06616244},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla.2008.118","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W116902681","https://openalex.org/W152645600","https://openalex.org/W194690841","https://openalex.org/W1989037929","https://openalex.org/W2017983692","https://openalex.org/W2098272719","https://openalex.org/W2106952242","https://openalex.org/W2117646056","https://openalex.org/W2120109256","https://openalex.org/W2124192284","https://openalex.org/W2129330015","https://openalex.org/W2130876538","https://openalex.org/W2147880780","https://openalex.org/W4242702158","https://openalex.org/W58346954"],"related_works":["https://openalex.org/W71572444","https://openalex.org/W3049200503","https://openalex.org/W2591622283","https://openalex.org/W2350336482","https://openalex.org/W2347413598","https://openalex.org/W2330863229","https://openalex.org/W2182136398","https://openalex.org/W2032415964","https://openalex.org/W2014214435","https://openalex.org/W1997383766"],"abstract_inverted_index":{"This":[0],"article":[1],"presents":[2],"a":[3,18],"method":[4,13,35,68,108],"for":[5,17],"the":[6,21,24,56,67,85,105,117],"calculating":[7],"similarity":[8,87],"of":[9,23,66,84],"two":[10,77],"trajectories.":[11],"The":[12,33,64,81],"is":[14,36],"especially":[15],"designed":[16],"situation":[19],"where":[20],"points":[22,45,57],"trajectories":[25],"are":[26,47],"distributed":[27],"sparsely":[28],"and":[29,100,114],"at":[30],"non-equidistant":[31],"intervals.":[32],"proposed":[34,86,107],"based":[37],"on":[38],"giving":[39],"different":[40,43],"weights":[41,54],"to":[42,49],"points:":[44],"that":[46,58,104],"close":[48],"each":[50],"other":[51,93,118],"get":[52],"smaller":[53],"than":[55,116],"do":[59],"not":[60],"have":[61],"neighbors":[62],"nearby.":[63],"effectiveness":[65],"was":[69,89,102],"tested":[70],"with":[71,91],"12":[72],"data":[73,79],"sets":[74],"generated":[75],"from":[76],"benchmark":[78],"sets.":[80],"classifying":[82],"accuracy":[83],"measure":[88],"compared":[90],"three":[92,119],"methods,":[94],"such":[95],"as":[96],"dynamic":[97],"time":[98],"warping,":[99],"it":[101],"noted":[103],"new":[106],"classifies":[109],"instances":[110],"mainly":[111],"more":[112],"accurately":[113],"faster":[115],"methods.":[120]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2145204877","counts_by_year":[{"year":2019,"cited_by_count":1}],"updated_date":"2025-03-21T06:44:40.939048","created_date":"2016-06-24"}