{"id":"https://openalex.org/W3169971941","doi":"https://doi.org/10.1109/icme51207.2021.9428455","title":"Unsupervised Ensemble Learning Via Network Generation","display_name":"Unsupervised Ensemble Learning Via Network Generation","publication_year":2021,"publication_date":"2021-06-09","ids":{"openalex":"https://openalex.org/W3169971941","doi":"https://doi.org/10.1109/icme51207.2021.9428455","mag":"3169971941"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icme51207.2021.9428455","pdf_url":null,"source":{"id":"https://openalex.org/S4363607799","display_name":"2022 IEEE International Conference on Multimedia and Expo (ICME)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5060667474","display_name":"Zhongfan Zhang","orcid":null},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"education","lineage":["https://openalex.org/I90610280"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhongfan Zhang","raw_affiliation_strings":["School of Computer Science and Engineering, South China University of Technology"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, South China University of Technology","institution_ids":["https://openalex.org/I90610280"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100625023","display_name":"Wenming Cao","orcid":"https://orcid.org/0000-0002-6908-8018"},"institutions":[{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"education","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Wenming Cao","raw_affiliation_strings":["Department of Diagnostic Radiology, The University of Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Diagnostic Radiology, The University of Hong Kong","institution_ids":["https://openalex.org/I889458895"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101660672","display_name":"Cheng Liu","orcid":"https://orcid.org/0000-0002-7204-7030"},"institutions":[{"id":"https://openalex.org/I32574673","display_name":"Shantou University","ror":"https://ror.org/01a099706","country_code":"CN","type":"education","lineage":["https://openalex.org/I32574673"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Cheng Liu","raw_affiliation_strings":["Department of Computer Science, Shantou University"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Shantou University","institution_ids":["https://openalex.org/I32574673"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100341968","display_name":"Rui Li","orcid":"https://orcid.org/0000-0002-8224-7888"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"education","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Rui Li","raw_affiliation_strings":["Department of Computer Science, City University of Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, City University of Hong Kong","institution_ids":["https://openalex.org/I168719708"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070159193","display_name":"Qianfen Jiao","orcid":"https://orcid.org/0000-0003-3264-1577"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"education","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Qianfen Jiao","raw_affiliation_strings":["Department of Computer Science, City University of Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, City University of Hong Kong","institution_ids":["https://openalex.org/I168719708"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100701158","display_name":"Zhiwen Yu","orcid":"https://orcid.org/0000-0002-0935-5890"},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"education","lineage":["https://openalex.org/I90610280"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhiwen Yu","raw_affiliation_strings":["School of Computer Science and Engineering, South China University of Technology"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, South China University of Technology","institution_ids":["https://openalex.org/I90610280"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100643265","display_name":"C. L. Philip Chen","orcid":"https://orcid.org/0000-0001-5451-7230"},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"education","lineage":["https://openalex.org/I90610280"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"C. L. Philip Chen","raw_affiliation_strings":["School of Computer Science and Engineering, South China University of Technology"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, South China University of Technology","institution_ids":["https://openalex.org/I90610280"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5014196059","display_name":"Hau\u2212San Wong","orcid":"https://orcid.org/0000-0002-1530-7529"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"education","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Hau-San Wong","raw_affiliation_strings":["Department of Computer Science, City University of Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, City University of Hong Kong","institution_ids":["https://openalex.org/I168719708"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11309","display_name":"Audio Signal Classification and Analysis","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11309","display_name":"Audio Signal Classification and Analysis","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks in Image Processing","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.8756659},{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble learning","score":0.6543801},{"id":"https://openalex.org/keywords/unsupervised-learning","display_name":"Unsupervised Learning","score":0.651401},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.557087},{"id":"https://openalex.org/keywords/environmental-sound-recognition","display_name":"Environmental Sound Recognition","score":0.517319},{"id":"https://openalex.org/keywords/audio-event-detection","display_name":"Audio Event Detection","score":0.517007},{"id":"https://openalex.org/keywords/generative-adversarial-networks","display_name":"Generative Adversarial Networks","score":0.516216}],"concepts":[{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.8756659},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77524227},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.7376479},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.67974305},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.6543801},{"id":"https://openalex.org/C8038995","wikidata":"https://www.wikidata.org/wiki/Q1152135","display_name":"Unsupervised learning","level":2,"score":0.62681264},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.5982294},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5461834},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45977673},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4527616},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38717747},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icme51207.2021.9428455","pdf_url":null,"source":{"id":"https://openalex.org/S4363607799","display_name":"2022 IEEE International Conference on Multimedia and Expo (ICME)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1648123822","https://openalex.org/W180242331","https://openalex.org/W1964832275","https://openalex.org/W2779692282","https://openalex.org/W2883725317","https://openalex.org/W2887997457","https://openalex.org/W2912119436","https://openalex.org/W2950365520","https://openalex.org/W2952171869","https://openalex.org/W2952229419","https://openalex.org/W2963365397","https://openalex.org/W2963420272","https://openalex.org/W2964074409","https://openalex.org/W2964275228","https://openalex.org/W2978426779","https://openalex.org/W2981952041","https://openalex.org/W2990500698","https://openalex.org/W2995154134","https://openalex.org/W4320013936"],"related_works":["https://openalex.org/W4389249638","https://openalex.org/W4386603768","https://openalex.org/W4380078352","https://openalex.org/W3212699736","https://openalex.org/W3046591097","https://openalex.org/W2950475743","https://openalex.org/W2913506004","https://openalex.org/W2911822711","https://openalex.org/W2886711096","https://openalex.org/W2750384547"],"abstract_inverted_index":{"In":[0],"this":[1],"work,":[2],"we":[3,18,38],"propose":[4],"an":[5],"unsupervised":[6],"ensemble":[7,24],"learning":[8],"method":[9,76],"via":[10],"network":[11],"generation,":[12],"referred":[13],"to":[14,47],"as":[15,44],"UELNG.":[16,102],"Specifically,":[17],"first":[19],"generate":[20],"weights":[21],"of":[22,59,99],"clustering":[23,62],"models":[25],"by":[26,80],"adopting":[27],"HyperGAN,":[28],"and":[29,61,85,92],"obtain":[30],"diverse":[31],"partitions":[32],"for":[33,51],"data.":[34],"With":[35],"these":[36],"partitions,":[37],"can":[39],"easily":[40],"identify":[41],"high-confident":[42],"pseudo-labels":[43,60],"supervised":[45],"information":[46],"predict":[48],"low-entropy":[49],"labels":[50],"unlabeled":[52],"augmented":[53],"data,":[54],"thereby":[55],"enhancing":[56],"the":[57,97],"quality":[58],"accuracy.":[63],"We":[64],"conduct":[65],"experiments":[66],"on":[67,87],"multiple":[68],"data":[69],"sets.":[70],"Experimental":[71],"results":[72],"indicate":[73],"that":[74],"our":[75,100],"outperforms":[77],"state-of-the-art":[78],"methods":[79],"0.3%,":[81],"1.8%,":[82],"5.7%,":[83],"3.2%":[84],"2.4%":[86],"MNIST,":[88],"STL-10,":[89],"CIFAR-10,":[90],"Reuters":[91],"20News,":[93],"respectively,":[94],"which":[95],"demonstrates":[96],"effectiveness":[98],"proposed":[101]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3169971941","counts_by_year":[],"updated_date":"2024-12-01T09:25:36.032610","created_date":"2021-06-22"}