{"id":"https://openalex.org/W3170225593","doi":"https://doi.org/10.1109/icme51207.2021.9428105","title":"CoConv: Learning Dynamic Cooperative Convolution for Image Recognition","display_name":"CoConv: Learning Dynamic Cooperative Convolution for Image Recognition","publication_year":2021,"publication_date":"2021-06-09","ids":{"openalex":"https://openalex.org/W3170225593","doi":"https://doi.org/10.1109/icme51207.2021.9428105","mag":"3170225593"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icme51207.2021.9428105","pdf_url":null,"source":{"id":"https://openalex.org/S4363607799","display_name":"2022 IEEE International Conference on Multimedia and Expo (ICME)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037582759","display_name":"Kien X. Nguyen","orcid":null},"institutions":[{"id":"https://openalex.org/I128956969","display_name":"Texas Christian University","ror":"https://ror.org/054b0b564","country_code":"US","type":"funder","lineage":["https://openalex.org/I128956969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kien X. Nguyen","raw_affiliation_strings":["Texas Christian University"],"affiliations":[{"raw_affiliation_string":"Texas Christian University","institution_ids":["https://openalex.org/I128956969"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087773565","display_name":"Tiffany Ryu","orcid":null},"institutions":[{"id":"https://openalex.org/I123534392","display_name":"University of North Texas","ror":"https://ror.org/00v97ad02","country_code":"US","type":"funder","lineage":["https://openalex.org/I123534392"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tiffany Ryu","raw_affiliation_strings":["University of North Texas"],"affiliations":[{"raw_affiliation_string":"University of North Texas","institution_ids":["https://openalex.org/I123534392"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091390930","display_name":"Jocelyn Zhang","orcid":"https://orcid.org/0009-0008-9828-115X"},"institutions":[{"id":"https://openalex.org/I123534392","display_name":"University of North Texas","ror":"https://ror.org/00v97ad02","country_code":"US","type":"funder","lineage":["https://openalex.org/I123534392"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jocelyn Zhang","raw_affiliation_strings":["University of North Texas"],"affiliations":[{"raw_affiliation_string":"University of North Texas","institution_ids":["https://openalex.org/I123534392"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100701889","display_name":"Xu Ma","orcid":"https://orcid.org/0000-0003-2864-4708"},"institutions":[{"id":"https://openalex.org/I123534392","display_name":"University of North Texas","ror":"https://ror.org/00v97ad02","country_code":"US","type":"funder","lineage":["https://openalex.org/I123534392"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xu Ma","raw_affiliation_strings":["University of North Texas"],"affiliations":[{"raw_affiliation_string":"University of North Texas","institution_ids":["https://openalex.org/I123534392"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101440566","display_name":"Qing Yang","orcid":"https://orcid.org/0000-0002-2772-4813"},"institutions":[{"id":"https://openalex.org/I123534392","display_name":"University of North Texas","ror":"https://ror.org/00v97ad02","country_code":"US","type":"funder","lineage":["https://openalex.org/I123534392"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Qing Yang","raw_affiliation_strings":["University of North Texas"],"affiliations":[{"raw_affiliation_string":"University of North Texas","institution_ids":["https://openalex.org/I123534392"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082758762","display_name":"Song Fu","orcid":"https://orcid.org/0000-0002-7705-0829"},"institutions":[{"id":"https://openalex.org/I123534392","display_name":"University of North Texas","ror":"https://ror.org/00v97ad02","country_code":"US","type":"funder","lineage":["https://openalex.org/I123534392"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Song Fu","raw_affiliation_strings":["University of North Texas"],"affiliations":[{"raw_affiliation_string":"University of North Texas","institution_ids":["https://openalex.org/I123534392"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032764353","display_name":"Paparao Palacharla","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Paparao Palacharla","raw_affiliation_strings":["Fujitsu Network Communications"],"affiliations":[{"raw_affiliation_string":"Fujitsu Network Communications","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042507268","display_name":"Nannan Wang","orcid":"https://orcid.org/0000-0002-4695-6134"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nannan Wang","raw_affiliation_strings":["Fujitsu Network Communications"],"affiliations":[{"raw_affiliation_string":"Fujitsu Network Communications","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100442261","display_name":"Xi Wang","orcid":"https://orcid.org/0000-0002-5218-2761"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xi Wang","raw_affiliation_strings":["Fujitsu Network Communications"],"affiliations":[{"raw_affiliation_string":"Fujitsu Network Communications","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.8252549},{"id":"https://openalex.org/keywords/convolutional-code","display_name":"Convolutional code","score":0.64805776},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.5475283},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.44998974}],"concepts":[{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.8252549},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7998584},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6707877},{"id":"https://openalex.org/C157899210","wikidata":"https://www.wikidata.org/wiki/Q1395022","display_name":"Convolutional code","level":3,"score":0.64805776},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.574875},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57151043},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.5475283},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5213776},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4866789},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.4764983},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.44998974},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39491105},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.28266916},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.09592754},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icme51207.2021.9428105","pdf_url":null,"source":{"id":"https://openalex.org/S4363607799","display_name":"2022 IEEE International Conference on Multimedia and Expo (ICME)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W2097117768","https://openalex.org/W2108598243","https://openalex.org/W2109255472","https://openalex.org/W2163605009","https://openalex.org/W2183341477","https://openalex.org/W2194775991","https://openalex.org/W2549139847","https://openalex.org/W2551176409","https://openalex.org/W2898732869","https://openalex.org/W2899748887","https://openalex.org/W2928165649","https://openalex.org/W2963125010","https://openalex.org/W2963163009","https://openalex.org/W2963420686","https://openalex.org/W2963446712","https://openalex.org/W2981609437","https://openalex.org/W2982083293","https://openalex.org/W2982101047","https://openalex.org/W3014641072","https://openalex.org/W3034421924","https://openalex.org/W3118608800","https://openalex.org/W4295312788","https://openalex.org/W4297775537"],"related_works":["https://openalex.org/W4360783045","https://openalex.org/W3176438653","https://openalex.org/W3167930666","https://openalex.org/W3014952856","https://openalex.org/W3010730661","https://openalex.org/W2964954556","https://openalex.org/W2963346891","https://openalex.org/W2952813363","https://openalex.org/W2770149305","https://openalex.org/W2610189143"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3],"present":[4],"a":[5,22,37,61,86],"conceptually":[6],"simple,":[7],"yet":[8],"powerful":[9],"method":[10],"for":[11,39,92,107],"image":[12,108],"recognition.":[13],"The":[14,135],"method,":[15],"called":[16],"Cooperative":[17],"Dynamic":[18],"Convolution":[19],"(CoConv),":[20],"introduces":[21],"cooperative":[23],"learning":[24],"of":[25,114,117,129],"dynamic":[26],"convolution":[27],"from":[28,97],"multiple":[29,75],"convolutional":[30,76,81,90,120],"experts.":[31],"CoConv":[32,54,70,102,123],"can":[33,45],"be":[34,46],"used":[35],"as":[36],"substitute":[38],"the":[40,67,80,115,118,125],"traditional":[41],"static":[42],"convolution,":[43],"and":[44,79],"seamlessly":[47],"integrated":[48],"in":[49,66],"various":[50,111],"visual":[51],"models.":[52],"Moreover,":[53],"is":[55,71,137],"easy":[56],"to":[57,104],"train":[58],"with":[59],"only":[60],"minimal":[62],"computational":[63],"overhead":[64],"introduced":[65],"inference":[68],"phase.":[69],"trained":[72],"by":[73,85,131],"using":[74],"experts":[77],"simultaneously,":[78],"weights":[82],"are":[83],"merged":[84],"weighted":[87],"summation":[88],"before":[89],"operations":[91],"efficiency":[93],"during":[94],"inference.":[95],"Results":[96],"extensive":[98],"experiments":[99],"show":[100],"that":[101],"leads":[103],"consistent":[105],"improvement":[106],"classification":[109,127],"on":[110,133],"datasets,":[112],"independent":[113],"choice":[116],"base":[119],"network.":[121],"Remarkably,":[122],"improves":[124],"top-1":[126],"accuracy":[128],"ResNet18":[130],"3.06%":[132],"ImageNet.":[134],"code":[136],"available":[138],"at:":[139],"https://github.com/Nyquixt/CoConv.":[140]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3170225593","counts_by_year":[],"updated_date":"2025-01-27T06:57:52.133674","created_date":"2021-06-22"}