{"id":"https://openalex.org/W1980974174","doi":"https://doi.org/10.1109/icme.2014.6890310","title":"Deblur a blurred RGB image with a sharp NIR image through local linear mapping","display_name":"Deblur a blurred RGB image with a sharp NIR image through local linear mapping","publication_year":2014,"publication_date":"2014-07-01","ids":{"openalex":"https://openalex.org/W1980974174","doi":"https://doi.org/10.1109/icme.2014.6890310","mag":"1980974174"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icme.2014.6890310","pdf_url":null,"source":{"id":"https://openalex.org/S4363607799","display_name":"2022 IEEE International Conference on Multimedia and Expo (ICME)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101747516","display_name":"Tao Yue","orcid":"https://orcid.org/0000-0002-2952-8971"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tao Yue","raw_affiliation_strings":["Department of automation,Tsinghua University,Beijing 100084,China)"],"affiliations":[{"raw_affiliation_string":"Department of automation,Tsinghua University,Beijing 100084,China)","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109127966","display_name":"Ming\u2013Ting Sun","orcid":null},"institutions":[{"id":"https://openalex.org/I58610484","display_name":"Seattle University","ror":"https://ror.org/02jqc0m91","country_code":"US","type":"education","lineage":["https://openalex.org/I58610484"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ming-Ting Sun","raw_affiliation_strings":["Department of Electrical Engineering, Seattle, 98105, U.S.A"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, Seattle, 98105, U.S.A","institution_ids":["https://openalex.org/I58610484"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058849717","display_name":"Zhengyou Zhang","orcid":"https://orcid.org/0000-0002-6606-2525"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhengyou Zhang","raw_affiliation_strings":["Microsoft Corp., Redmond, 98052, U.S.A"],"affiliations":[{"raw_affiliation_string":"Microsoft Corp., Redmond, 98052, U.S.A","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051445938","display_name":"Jinli Suo","orcid":"https://orcid.org/0000-0002-3426-1634"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jinli Suo","raw_affiliation_strings":["Department of automation,Tsinghua University,Beijing 100084,China)"],"affiliations":[{"raw_affiliation_string":"Department of automation,Tsinghua University,Beijing 100084,China)","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5080722708","display_name":"Qionghai Dai","orcid":"https://orcid.org/0000-0001-7043-3061"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qionghai Dai","raw_affiliation_strings":["Department of automation,Tsinghua University,Beijing 100084,China)"],"affiliations":[{"raw_affiliation_string":"Department of automation,Tsinghua University,Beijing 100084,China)","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.275,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.458717,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":80},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.7222979}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.751529},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.7222979},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6848569},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5784203},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.5628468},{"id":"https://openalex.org/C106430172","wikidata":"https://www.wikidata.org/wiki/Q6002272","display_name":"Image restoration","level":4,"score":0.5106178},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.34680614},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.33450007}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icme.2014.6890310","pdf_url":null,"source":{"id":"https://openalex.org/S4363607799","display_name":"2022 IEEE International Conference on Multimedia and Expo (ICME)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1489483414","https://openalex.org/W1598281290","https://openalex.org/W1975807114","https://openalex.org/W1976730913","https://openalex.org/W1987075379","https://openalex.org/W1988446025","https://openalex.org/W1994152568","https://openalex.org/W2012893378","https://openalex.org/W2032506791","https://openalex.org/W2080592425","https://openalex.org/W2090325967","https://openalex.org/W2095727488","https://openalex.org/W2099431685","https://openalex.org/W2099770336","https://openalex.org/W2120853285","https://openalex.org/W2121689659","https://openalex.org/W2122955768","https://openalex.org/W2123094559","https://openalex.org/W2135238609","https://openalex.org/W2144553684","https://openalex.org/W2154194773","https://openalex.org/W2164517370","https://openalex.org/W2167053624","https://openalex.org/W2167307343","https://openalex.org/W3137059050","https://openalex.org/W4232454059","https://openalex.org/W4236771684"],"related_works":["https://openalex.org/W90581812","https://openalex.org/W2997591215","https://openalex.org/W2486460843","https://openalex.org/W2393963626","https://openalex.org/W2365681766","https://openalex.org/W2357322570","https://openalex.org/W2227541280","https://openalex.org/W2168109476","https://openalex.org/W1968121071","https://openalex.org/W1598401975"],"abstract_inverted_index":{"Image":[0],"acquisition":[1],"in":[2,52],"a":[3,27,49,53,81],"low":[4],"light":[5],"environment":[6,34],"requires":[7],"long":[8],"exposure":[9],"to":[10],"achieve":[11],"acceptable":[12],"signal-to-noise":[13],"ratio,":[14],"which":[15],"however":[16],"causes":[17],"blurry":[18],"effect.":[19],"This":[20],"paper":[21],"addresses":[22],"this":[23,72],"problem":[24],"by":[25],"using":[26],"sharp":[28,68,77],"near-infrared":[29],"(NIR)":[30],"image":[31,46,69,84],"when":[32],"the":[33,58,65,76,86,96],"has":[35,48],"sufficient":[36],"NIR":[37,45,91],"light.":[38],"We":[39],"assume":[40],"that":[41,57],"an":[42],"RGB":[43,78,83],"and":[44,56,67,85,104],"pair":[47],"linear":[50],"mapping":[51,59],"local":[54],"area":[55],"function":[60],"is":[61,99],"valid":[62],"for":[63],"both":[64,102],"blur":[66],"pairs.":[70],"Using":[71],"property,":[73],"we":[74],"solve":[75],"images":[79],"from":[80],"blurred":[82],"corres":[87],"ponding":[88],"s":[89],"harp":[90],"image.":[92],"The":[93],"effectiveness":[94],"of":[95],"proposed":[97],"algorithm":[98],"verified":[100],"with":[101],"synthetic":[103],"real":[105],"captured":[106],"datasets.":[107]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1980974174","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":2}],"updated_date":"2025-04-19T05:31:55.471622","created_date":"2016-06-24"}