{"id":"https://openalex.org/W2529344908","doi":"https://doi.org/10.1109/icite.2016.7581300","title":"Real time bus arrival time prediction system under Indian traffic condition","display_name":"Real time bus arrival time prediction system under Indian traffic condition","publication_year":2016,"publication_date":"2016-08-01","ids":{"openalex":"https://openalex.org/W2529344908","doi":"https://doi.org/10.1109/icite.2016.7581300","mag":"2529344908"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icite.2016.7581300","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5088079093","display_name":"B. Dhivyabharathi","orcid":null},"institutions":[{"id":"https://openalex.org/I24676775","display_name":"Indian Institute of Technology Madras","ror":"https://ror.org/03v0r5n49","country_code":"IN","type":"facility","lineage":["https://openalex.org/I24676775"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"B. Dhivyabharathi","raw_affiliation_strings":["Department of Civil Engineering, IIT Madras, Chennai, India"],"affiliations":[{"raw_affiliation_string":"Department of Civil Engineering, IIT Madras, Chennai, India","institution_ids":["https://openalex.org/I24676775"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087605688","display_name":"B. Anil Kumar","orcid":"https://orcid.org/0000-0001-5933-8362"},"institutions":[{"id":"https://openalex.org/I24676775","display_name":"Indian Institute of Technology Madras","ror":"https://ror.org/03v0r5n49","country_code":"IN","type":"facility","lineage":["https://openalex.org/I24676775"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"B. Anil Kumar","raw_affiliation_strings":["Department of Civil Engineering, IIT Madras, Chennai, India"],"affiliations":[{"raw_affiliation_string":"Department of Civil Engineering, IIT Madras, Chennai, India","institution_ids":["https://openalex.org/I24676775"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5070390385","display_name":"Lelitha Vanajakshi","orcid":"https://orcid.org/0000-0002-1137-9656"},"institutions":[{"id":"https://openalex.org/I24676775","display_name":"Indian Institute of Technology Madras","ror":"https://ror.org/03v0r5n49","country_code":"IN","type":"facility","lineage":["https://openalex.org/I24676775"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Lelitha Vanajakshi","raw_affiliation_strings":["Department of Civil Engineering, IIT Madras, Chennai, India"],"affiliations":[{"raw_affiliation_string":"Department of Civil Engineering, IIT Madras, Chennai, India","institution_ids":["https://openalex.org/I24676775"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.328,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":17,"citation_normalized_percentile":{"value":0.810099,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10524","display_name":"Traffic control and management","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/arrival-time","display_name":"Arrival time","score":0.6410858}],"concepts":[{"id":"https://openalex.org/C157286648","wikidata":"https://www.wikidata.org/wiki/Q846780","display_name":"Kalman filter","level":2,"score":0.6558875},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64747703},{"id":"https://openalex.org/C3017552255","wikidata":"https://www.wikidata.org/wiki/Q4135208","display_name":"Arrival time","level":2,"score":0.6410858},{"id":"https://openalex.org/C2985733770","wikidata":"https://www.wikidata.org/wiki/Q1233007","display_name":"Travel time","level":2,"score":0.6334875},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.60721654},{"id":"https://openalex.org/C150217764","wikidata":"https://www.wikidata.org/wiki/Q6803607","display_name":"Mean absolute percentage error","level":3,"score":0.5903037},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.52101064},{"id":"https://openalex.org/C539828613","wikidata":"https://www.wikidata.org/wiki/Q178512","display_name":"Public transport","level":2,"score":0.52045727},{"id":"https://openalex.org/C47796450","wikidata":"https://www.wikidata.org/wiki/Q508378","display_name":"Intelligent transportation system","level":2,"score":0.45352066},{"id":"https://openalex.org/C44154836","wikidata":"https://www.wikidata.org/wiki/Q45045","display_name":"Simulation","level":1,"score":0.37666142},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33685473},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.20922095},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.19746077},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.18327895},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.1621261},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icite.2016.7581300","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1512556346","https://openalex.org/W1513008779","https://openalex.org/W1785408376","https://openalex.org/W1922407700","https://openalex.org/W1965186506","https://openalex.org/W1967463056","https://openalex.org/W1971348576","https://openalex.org/W1976223062","https://openalex.org/W1977594918","https://openalex.org/W1992781095","https://openalex.org/W2016025229","https://openalex.org/W2026184121","https://openalex.org/W2026524503","https://openalex.org/W2039559615","https://openalex.org/W2074108366","https://openalex.org/W2083697564","https://openalex.org/W2106110155","https://openalex.org/W2121336049","https://openalex.org/W2144462757","https://openalex.org/W2160337655","https://openalex.org/W2594443195","https://openalex.org/W623691779","https://openalex.org/W645983047"],"related_works":["https://openalex.org/W585172599","https://openalex.org/W3019845177","https://openalex.org/W3006885500","https://openalex.org/W2902078260","https://openalex.org/W2595380028","https://openalex.org/W2390190242","https://openalex.org/W2368938271","https://openalex.org/W2199764042","https://openalex.org/W2185197683","https://openalex.org/W2149287271"],"abstract_inverted_index":{"The":[0,50,70,103,162,193],"estimation":[1],"of":[2,67,81,88,115,118,168,195],"bus":[3,11,82,109,120],"travel":[4,83,110,121,126,143,177],"time":[5,13,91,111,127,178],"and":[6,25,52,65,130,180],"providing":[7],"accurate":[8,79],"information":[9,42,93],"about":[10],"arrival":[12],"to":[14,18,38,44,137,220],"passengers":[15,45],"are":[16,157,172],"important":[17],"make":[19],"public":[20],"transport":[21],"system":[22,37,94],"more":[23],"user-friendly":[24],"thus":[26],"enhance":[27],"its":[28],"competitiveness":[29],"among":[30],"various":[31],"transportation":[32],"modes.":[33],"However,":[34],"for":[35,55,78,85],"the":[36,41,63,68,86,107,113,116,139,166,169,175,181,187,196],"be":[39,47,221],"effective,":[40],"provided":[43],"should":[46],"highly":[48],"reliable.":[49],"model":[51,75,105,132,146,211],"technique":[53,152],"used":[54],"prediction":[56,80,182,204],"plays":[57],"a":[58,74,89,131,145,200],"major":[59],"role":[60],"in":[61,101,125,142,203],"enhancing":[62],"accuracy":[64,183,205],"reliability":[66],"system.":[69],"present":[71],"study":[72],"proposes":[73],"based":[76,147,212],"approach":[77,148,213],"times":[84],"development":[87],"real":[90],"passenger":[92],"under":[95,224],"heterogeneous":[96],"traffic":[97,226],"conditions":[98],"that":[99,217],"exist":[100],"India.":[102],"proposed":[104,197],"considers":[106],"predicted":[108],"as":[112],"sum":[114],"median":[117],"historical":[119],"times,":[122],"random":[123,140],"variations":[124,141],"over":[128],"time,":[129,144],"evolution":[133],"error.":[134],"In":[135],"order":[136],"capture":[138],"with":[149,174,208],"Particle":[150],"filtering":[151],"is":[153,184],"used,":[154],"wherein":[155],"inputs":[156],"obtained":[158,164],"using":[159,186,214],"k-NN":[160],"algorithm.":[161],"results":[163],"from":[165],"implementation":[167],"above":[170],"method":[171,198],"compared":[173,207],"measured":[176],"data":[179],"quantified":[185],"Mean":[188],"Absolute":[189],"Percentage":[190],"Error":[191],"(MAPE).":[192],"Performance":[194],"showed":[199],"clear":[201],"improvement":[202],"when":[206],"an":[209],"existing":[210],"Kalman":[215],"filter":[216],"was":[218],"reported":[219],"work":[222],"well":[223],"similar":[225],"conditions.":[227]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2529344908","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":3},{"year":2017,"cited_by_count":2}],"updated_date":"2025-01-02T04:00:39.763089","created_date":"2016-10-14"}