{"id":"https://openalex.org/W3016488155","doi":"https://doi.org/10.1109/icit45562.2020.9067143","title":"Visualization of Important Human Motion Feature Using Convolutional Neural Network","display_name":"Visualization of Important Human Motion Feature Using Convolutional Neural Network","publication_year":2020,"publication_date":"2020-02-01","ids":{"openalex":"https://openalex.org/W3016488155","doi":"https://doi.org/10.1109/icit45562.2020.9067143","mag":"3016488155"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icit45562.2020.9067143","pdf_url":null,"source":{"id":"https://openalex.org/S4363608411","display_name":"2022 IEEE International Conference on Industrial Technology (ICIT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113436244","display_name":"Masashi Fukui","orcid":null},"institutions":[{"id":"https://openalex.org/I203951103","display_name":"Keio University","ror":"https://ror.org/02kn6nx58","country_code":"JP","type":"funder","lineage":["https://openalex.org/I203951103"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Masashi Fukui","raw_affiliation_strings":["Graduate School of Science and Technology, Keio University, Kanagawa, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Science and Technology, Keio University, Kanagawa, Japan","institution_ids":["https://openalex.org/I203951103"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064480741","display_name":"Genki Kokubun","orcid":null},"institutions":[],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Genki Kokubun","raw_affiliation_strings":["Motion Lib, inc., Kanagawa, Japan"],"affiliations":[{"raw_affiliation_string":"Motion Lib, inc., Kanagawa, Japan","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5022585140","display_name":"Takahiro Nozaki","orcid":"https://orcid.org/0000-0002-2558-9822"},"institutions":[],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takahiro Nozaki","raw_affiliation_strings":["Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan"],"affiliations":[{"raw_affiliation_string":"Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.125,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.196617,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":73},"biblio":{"volume":"80","issue":null,"first_page":"406","last_page":"411"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5849298}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.82495105},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8105897},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.77882123},{"id":"https://openalex.org/C36464697","wikidata":"https://www.wikidata.org/wiki/Q451553","display_name":"Visualization","level":2,"score":0.697032},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.6651576},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.6263704},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.59907746},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5849298},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.53880453},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4430017},{"id":"https://openalex.org/C10161872","wikidata":"https://www.wikidata.org/wiki/Q557891","display_name":"Motion estimation","level":2,"score":0.4249202},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icit45562.2020.9067143","pdf_url":null,"source":{"id":"https://openalex.org/S4363608411","display_name":"2022 IEEE International Conference on Industrial Technology (ICIT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.51},{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.5}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1787224781","https://openalex.org/W1849277567","https://openalex.org/W1940068017","https://openalex.org/W2002261403","https://openalex.org/W2054780155","https://openalex.org/W2097117768","https://openalex.org/W2110159806","https://openalex.org/W2123045220","https://openalex.org/W2135018291","https://openalex.org/W2164055860","https://openalex.org/W2194775991","https://openalex.org/W2550476060","https://openalex.org/W2605409611","https://openalex.org/W2962715563","https://openalex.org/W2962858109","https://openalex.org/W2963510708","https://openalex.org/W3103233276","https://openalex.org/W4255262795","https://openalex.org/W4293861706"],"related_works":["https://openalex.org/W4293226380","https://openalex.org/W3124914020","https://openalex.org/W2383687187","https://openalex.org/W2156434174","https://openalex.org/W2141033859","https://openalex.org/W2121496884","https://openalex.org/W2081517010","https://openalex.org/W2077542787","https://openalex.org/W2071701083","https://openalex.org/W2068608913"],"abstract_inverted_index":{"Human":[0],"motion":[1,8,18,28,72,132,135],"feature":[2,12],"extraction":[3,13],"is":[4,36,81,87,136,173,209],"necessary":[5],"for":[6,70,126,138],"robot":[7],"generation.":[9],"In":[10,94],"particular,":[11],"methods":[14,102],"related":[15],"to":[16,39,67,89,96],"non-periodic":[17],"should":[19],"be":[20,68,205],"proposed.":[21],"Recently,":[22],"the":[23,26,40,50,60,76,91,98,107,116,121,139,145,152,158,162,171,187,197,199],"number":[24],"of":[25,43,79],"human":[27,71,131,134],"recognition":[29],"studies":[30,119],"utilizing":[31,120],"Convolutional":[32],"Neural":[33],"Network":[34],"(CNN)":[35],"increasing":[37],"due":[38],"brilliant":[41],"ability":[42,55],"extracting":[44],"and":[45,201],"identifying":[46],"features.":[47,93],"CNN":[48,64,80,128,182],"has":[49],"same":[51,163],"or":[52],"better":[53],"discrimination":[54],"than":[56],"humans":[57],"so":[58],"that":[59],"features":[61],"extracted":[62,92],"by":[63,185,211],"are":[65,104,110,123],"thought":[66],"useful":[69],"understanding.":[73],"However,":[74],"since":[75],"internal":[77],"structure":[78],"like":[82],"a":[83],"black":[84],"box,":[85],"it":[86],"difficult":[88],"understand":[90,97],"order":[95],"features,":[99],"some":[100],"visualization":[101,203],"which":[103,129,141],"utilized":[105],"in":[106,112,161,175,189],"image":[108],"field":[109],"applied":[111],"this":[113,176,192],"paper.":[114,177],"Furthermore,":[115],"many":[117],"conventional":[118],"gradient":[122,146,172],"not":[124,149,195],"preferred":[125],"visualizing":[127,167],"recognizes":[130],"because":[133,151],"sensitive":[137],"object":[140],"treated.":[142],"That":[143],"is,":[144],"method":[147,168,180,193],"does":[148,194],"work":[150],"value":[153],"varies":[154],"greatly":[155],"depending":[156],"on":[157],"environment":[159],"even":[160],"motion.":[164],"Therefore,":[165],"new":[166],"without":[169],"using":[170],"proposed":[174,179],"The":[178,207],"visualizes":[181],"focusing":[183],"part":[184],"following":[186],"neuron":[188],"CNN.":[190],"Since":[191],"require":[196],"gradient,":[198],"stable":[200],"accurate":[202],"can":[204],"performed.":[206],"effectiveness":[208],"shown":[210],"experiments.":[212]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3016488155","counts_by_year":[{"year":2021,"cited_by_count":2}],"updated_date":"2025-04-15T16:01:42.115245","created_date":"2020-04-24"}