{"id":"https://openalex.org/W2511073133","doi":"https://doi.org/10.1109/icis.2016.7550888","title":"Lip reading using a dynamic feature of lip images and convolutional neural networks","display_name":"Lip reading using a dynamic feature of lip images and convolutional neural networks","publication_year":2016,"publication_date":"2016-06-01","ids":{"openalex":"https://openalex.org/W2511073133","doi":"https://doi.org/10.1109/icis.2016.7550888","mag":"2511073133"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icis.2016.7550888","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100670468","display_name":"Yiting Li","orcid":"https://orcid.org/0000-0002-0646-002X"},"institutions":[{"id":"https://openalex.org/I65837984","display_name":"Kobe University","ror":"https://ror.org/03tgsfw79","country_code":"JP","type":"funder","lineage":["https://openalex.org/I65837984"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yiting Li","raw_affiliation_strings":["Kobe University, Japan"],"affiliations":[{"raw_affiliation_string":"Kobe University, Japan","institution_ids":["https://openalex.org/I65837984"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087545401","display_name":"Yuki Takashima","orcid":"https://orcid.org/0000-0001-8489-9487"},"institutions":[{"id":"https://openalex.org/I65837984","display_name":"Kobe University","ror":"https://ror.org/03tgsfw79","country_code":"JP","type":"funder","lineage":["https://openalex.org/I65837984"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yuki Takashima","raw_affiliation_strings":["Kobe University, Japan"],"affiliations":[{"raw_affiliation_string":"Kobe University, Japan","institution_ids":["https://openalex.org/I65837984"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009283470","display_name":"Tetsuya Takiguchi","orcid":"https://orcid.org/0000-0001-5005-7679"},"institutions":[{"id":"https://openalex.org/I65837984","display_name":"Kobe University","ror":"https://ror.org/03tgsfw79","country_code":"JP","type":"funder","lineage":["https://openalex.org/I65837984"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Tetsuya Takiguchi","raw_affiliation_strings":["Kobe University, Japan"],"affiliations":[{"raw_affiliation_string":"Kobe University, Japan","institution_ids":["https://openalex.org/I65837984"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5040766342","display_name":"Yasuo Ariki","orcid":"https://orcid.org/0000-0003-3473-2026"},"institutions":[{"id":"https://openalex.org/I65837984","display_name":"Kobe University","ror":"https://ror.org/03tgsfw79","country_code":"JP","type":"funder","lineage":["https://openalex.org/I65837984"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yasuo Ariki","raw_affiliation_strings":["Kobe University, Japan"],"affiliations":[{"raw_affiliation_string":"Kobe University, Japan","institution_ids":["https://openalex.org/I65837984"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.983,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":39,"citation_normalized_percentile":{"value":0.905674,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"9","issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9851,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9546,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6933578},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.64410466}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7619091},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7507389},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.71335363},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6933578},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.68846023},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.68614435},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.64410466},{"id":"https://openalex.org/C2779304628","wikidata":"https://www.wikidata.org/wiki/Q3503480","display_name":"Face (sociological concept)","level":2,"score":0.5311284},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4691381},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.46906543},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.42008653},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icis.2016.7550888","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.85,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W124086577","https://openalex.org/W1454360699","https://openalex.org/W1771961173","https://openalex.org/W2015861736","https://openalex.org/W2076462394","https://openalex.org/W2088079940","https://openalex.org/W2106284211","https://openalex.org/W2127015832","https://openalex.org/W2138527036","https://openalex.org/W2157890992","https://openalex.org/W2163605009","https://openalex.org/W2168824259","https://openalex.org/W2182293097","https://openalex.org/W2316656562","https://openalex.org/W2962900249","https://openalex.org/W3149793578"],"related_works":["https://openalex.org/W4321487865","https://openalex.org/W4321444604","https://openalex.org/W4313906399","https://openalex.org/W4293226380","https://openalex.org/W3088721469","https://openalex.org/W3019910406","https://openalex.org/W2964954556","https://openalex.org/W2936819511","https://openalex.org/W2811106690","https://openalex.org/W2132337154"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"a":[3,7,30,37],"lip-reading":[4],"method":[5,93],"using":[6,29,55],"novel":[8],"dynamic":[9,17,50],"feature":[10,18,51],"of":[11,19,40,71],"lip":[12,20],"images":[13,21],"is":[14,22,52],"proposed.":[15],"The":[16,49],"calculated":[23],"as":[24],"the":[25,41,45,65,72,79,91,95],"first-order":[26],"regression":[27],"coefficients":[28],"few":[31],"neighboring":[32],"frames":[33],"(images).":[34],"It":[35],"constiutes":[36],"better":[38],"representation":[39],"time":[42],"derivatives":[43],"to":[44,63],"basic":[46],"static":[47,97],"image.":[48,99],"processed":[53],"by":[54,69,87],"convolution":[56],"neural":[57],"networks":[58],"(CNNs),":[59],"which":[60],"are":[61],"able":[62],"reduce":[64],"negative":[66],"influence":[67],"caused":[68],"shaking":[70],"subject":[73],"and":[74],"face":[75],"alignment":[76],"blurring":[77],"at":[78],"feature-extraction":[80],"level.":[81],"Its":[82],"effectiveness":[83],"has":[84],"been":[85],"confirmed":[86],"word-recognition":[88],"experiments":[89],"comparing":[90],"proposed":[92],"with":[94],"conventional":[96],"(original)":[98]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2511073133","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":9},{"year":2019,"cited_by_count":6},{"year":2018,"cited_by_count":4},{"year":2017,"cited_by_count":5}],"updated_date":"2025-04-23T13:49:46.555601","created_date":"2016-09-16"}