{"id":"https://openalex.org/W4386596939","doi":"https://doi.org/10.1109/icip49359.2023.10222906","title":"A Large Scale Multi-View RGBD Visual Affordance Learning Dataset","display_name":"A Large Scale Multi-View RGBD Visual Affordance Learning Dataset","publication_year":2023,"publication_date":"2023-09-11","ids":{"openalex":"https://openalex.org/W4386596939","doi":"https://doi.org/10.1109/icip49359.2023.10222906"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip49359.2023.10222906","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2203.14092","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041793324","display_name":"Zeyad Khalifa","orcid":null},"institutions":[{"id":"https://openalex.org/I176790772","display_name":"Murdoch University","ror":"https://ror.org/00r4sry34","country_code":"AU","type":"funder","lineage":["https://openalex.org/I176790772"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Zeyad Khalifa","raw_affiliation_strings":["School of Information Technology, Murdoch University, Perth, Australia"],"affiliations":[{"raw_affiliation_string":"School of Information Technology, Murdoch University, Perth, Australia","institution_ids":["https://openalex.org/I176790772"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5049303874","display_name":"Syed Afaq Ali Shah","orcid":"https://orcid.org/0000-0003-2181-8445"},"institutions":[{"id":"https://openalex.org/I176790772","display_name":"Murdoch University","ror":"https://ror.org/00r4sry34","country_code":"AU","type":"funder","lineage":["https://openalex.org/I176790772"]},{"id":"https://openalex.org/I12079687","display_name":"Edith Cowan University","ror":"https://ror.org/05jhnwe22","country_code":"AU","type":"funder","lineage":["https://openalex.org/I12079687"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Syed Afaq Ali Shah","raw_affiliation_strings":["School of Information Technology, Murdoch University, Perth, Australia","School of Science, Edith Cowan University, Perth, Australia"],"affiliations":[{"raw_affiliation_string":"School of Information Technology, Murdoch University, Perth, Australia","institution_ids":["https://openalex.org/I176790772"]},{"raw_affiliation_string":"School of Science, Edith Cowan University, Perth, Australia","institution_ids":["https://openalex.org/I12079687"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":"1325","last_page":"1329"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10653","display_name":"Robot Manipulation and Learning","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/affordance","display_name":"Affordance","score":0.9546921},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5804475},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.50524384},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.45448327}],"concepts":[{"id":"https://openalex.org/C194995250","wikidata":"https://www.wikidata.org/wiki/Q531136","display_name":"Affordance","level":2,"score":0.9546921},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7970458},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7512474},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.646989},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5871238},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5804475},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.54466},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.50524384},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.45448327},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.44566736},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41204235},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4034863},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.1463269},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip49359.2023.10222906","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14092","pdf_url":"https://arxiv.org/pdf/2203.14092","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14092","pdf_url":"https://arxiv.org/pdf/2203.14092","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1524405667","https://openalex.org/W1686810756","https://openalex.org/W1901129140","https://openalex.org/W2091938290","https://openalex.org/W2110764733","https://openalex.org/W2128122351","https://openalex.org/W2156222070","https://openalex.org/W2194775991","https://openalex.org/W2519537448","https://openalex.org/W2560023338","https://openalex.org/W2768362554","https://openalex.org/W2961368225","https://openalex.org/W2962984928","https://openalex.org/W2963150791","https://openalex.org/W3031794591","https://openalex.org/W3153149165","https://openalex.org/W3175450634","https://openalex.org/W4214893857","https://openalex.org/W4246193833","https://openalex.org/W4301141993","https://openalex.org/W4312726009"],"related_works":["https://openalex.org/W4309346246","https://openalex.org/W3049116993","https://openalex.org/W2589081601","https://openalex.org/W2346831895","https://openalex.org/W2248634132","https://openalex.org/W2226037301","https://openalex.org/W2026855223","https://openalex.org/W1972718289","https://openalex.org/W1791514435","https://openalex.org/W1541884709"],"abstract_inverted_index":{"The":[0,197],"physical":[1],"and":[2,14,41,52,65,76,91,134,151,158,173,186,192],"textural":[3],"attributes":[4],"of":[5,22,109,126,183],"objects":[6],"have":[7,29],"been":[8,30],"widely":[9],"studied":[10],"for":[11,32,42,72,87,148,170,190],"recognition,":[12,74],"detection":[13,75],"segmentation":[15,150,174],"tasks":[16,153],"in":[17],"computer":[18],"vision.":[19],"A":[20],"number":[21],"datasets,":[23],"such":[24],"as":[25],"large":[26,85,99],"scale":[27,100],"ImageNet,":[28],"proposed":[31,146],"feature":[33,44],"learning":[34,105,141,165,195],"using":[35,154],"data":[36],"hungry":[37],"deep":[38,164],"neural":[39],"networks":[40,166],"hand-crafted":[43],"extraction.":[45],"To":[46,78,123],"intelligently":[47],"interact":[48],"with":[49,118],"objects,":[50],"robots":[51],"intelligent":[53],"machines":[54],"need":[55],"the":[56,61,124,131,135,145,180,184],"ability":[57],"to":[58],"infer":[59],"beyond":[60],"traditional":[62],"physical/textural":[63],"attributes,":[64],"understand/learn":[66],"visual":[67,70,88,103,120,139],"cues,":[68],"called":[69],"affordances,":[71],"affordance":[73,89,104,121,140,149,171,194],"segmentation.":[77],"date":[79],"there":[80],"is":[81,130,199],"no":[82],"publicly":[83,200],"available":[84,201],"dataset":[86,147,185,198],"understanding":[90],"learning.":[92],"In":[93],"this":[94,129],"paper,":[95],"we":[96],"introduce":[97],"a":[98,107],"multi-view":[101,137],"RGBD":[102,111,138],"dataset,":[106],"benchmark":[108,144],"47210":[110],"images":[112],"from":[113],"37":[114],"object":[115],"categories,":[116],"annotated":[117],"15":[119],"categories.":[122],"best":[125],"our":[127],"knowledge,":[128],"first":[132],"ever":[133],"largest":[136],"dataset.":[142],"We":[143],"recognition":[152,172],"popular":[155],"Vision":[156],"Transformer":[157],"Convolutional":[159],"Neural":[160],"Networks.":[161],"Several":[162],"state-of-the-art":[163],"are":[167],"evaluated":[168],"each":[169],"tasks.":[175],"Our":[176],"experimental":[177],"results":[178],"showcase":[179],"challenging":[181],"nature":[182],"present":[187],"definite":[188],"prospects":[189],"new":[191],"robust":[193],"algorithms.":[196],"at":[202],"https://sites.google.com/view/afaqshah/dataset.":[203]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386596939","counts_by_year":[],"updated_date":"2025-04-10T08:00:11.069529","created_date":"2023-09-12"}