{"id":"https://openalex.org/W4386598253","doi":"https://doi.org/10.1109/icip49359.2023.10222144","title":"PS-NeRV: Patch-Wise Stylized Neural Representations for Videos","display_name":"PS-NeRV: Patch-Wise Stylized Neural Representations for Videos","publication_year":2023,"publication_date":"2023-09-11","ids":{"openalex":"https://openalex.org/W4386598253","doi":"https://doi.org/10.1109/icip49359.2023.10222144"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icip49359.2023.10222144","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://doi.org/10.1109/icip49359.2023.10222144","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101663471","display_name":"Yunpeng Bai","orcid":"https://orcid.org/0000-0002-6973-581X"},"institutions":[{"id":"https://openalex.org/I4210114105","display_name":"Tsinghua\u2013Berkeley Shenzhen Institute","ror":"https://ror.org/02hhwwz98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210114105","https://openalex.org/I95457486","https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yunpeng Bai","raw_affiliation_strings":["Tsinghua Shenzhen International Graduate School, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua Shenzhen International Graduate School, China","institution_ids":["https://openalex.org/I4210114105"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023845728","display_name":"Chao Dong","orcid":"https://orcid.org/0000-0003-2260-8079"},"institutions":[{"id":"https://openalex.org/I4391012619","display_name":"Shanghai Artificial Intelligence Laboratory","ror":"https://ror.org/03wkvpx79","country_code":null,"type":"facility","lineage":["https://openalex.org/I4391012619"]},{"id":"https://openalex.org/I4210145761","display_name":"Shenzhen Institutes of Advanced Technology","ror":"https://ror.org/04gh4er46","country_code":"CN","type":"funder","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210145761"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chao Dong","raw_affiliation_strings":["Shanghai AI Laboratory, China","Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences"],"affiliations":[{"raw_affiliation_string":"Shanghai AI Laboratory, China","institution_ids":["https://openalex.org/I4391012619"]},{"raw_affiliation_string":"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences","institution_ids":["https://openalex.org/I4210145761"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087932811","display_name":"Cairong Wang","orcid":null},"institutions":[{"id":"https://openalex.org/I4210114105","display_name":"Tsinghua\u2013Berkeley Shenzhen Institute","ror":"https://ror.org/02hhwwz98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210114105","https://openalex.org/I95457486","https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Cairong Wang","raw_affiliation_strings":["Tsinghua Shenzhen International Graduate School, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua Shenzhen International Graduate School, China","institution_ids":["https://openalex.org/I4210114105"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101456902","display_name":"Chun Yuan","orcid":"https://orcid.org/0000-0002-3590-6676"},"institutions":[{"id":"https://openalex.org/I4210114105","display_name":"Tsinghua\u2013Berkeley Shenzhen Institute","ror":"https://ror.org/02hhwwz98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210114105","https://openalex.org/I95457486","https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chun Yuan","raw_affiliation_strings":["Tsinghua Shenzhen International Graduate School, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua Shenzhen International Graduate School, China","institution_ids":["https://openalex.org/I4210114105"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.025,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":14,"citation_normalized_percentile":{"value":0.999722,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"33","issue":null,"first_page":"41","last_page":"45"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/inpainting","display_name":"Inpainting","score":0.6624018}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8238144},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7743325},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6652857},{"id":"https://openalex.org/C11727466","wikidata":"https://www.wikidata.org/wiki/Q1628157","display_name":"Inpainting","level":3,"score":0.6624018},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.62731105},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.602666},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.5523289},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.48377368},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.44499317},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.389635},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.138129}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icip49359.2023.10222144","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.03742","pdf_url":"https://arxiv.org/pdf/2208.03742","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icip49359.2023.10222144","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W2053186076","https://openalex.org/W2140199336","https://openalex.org/W2146395539","https://openalex.org/W2603777577","https://openalex.org/W2949582403","https://openalex.org/W2963189365","https://openalex.org/W2963627347","https://openalex.org/W3034802763","https://openalex.org/W3035195755","https://openalex.org/W3036843665","https://openalex.org/W3109585842","https://openalex.org/W3120676420","https://openalex.org/W3178317539","https://openalex.org/W3180799285","https://openalex.org/W3201844719","https://openalex.org/W3213174511","https://openalex.org/W4287756134","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W2907830442","https://openalex.org/W2379365082","https://openalex.org/W2370747590","https://openalex.org/W2369260257","https://openalex.org/W2368824897","https://openalex.org/W2119567889","https://openalex.org/W2039892622","https://openalex.org/W2030109976","https://openalex.org/W1910862367","https://openalex.org/W1508050556"],"abstract_inverted_index":{"We":[0,105],"study":[1],"how":[2],"to":[3,18,22,31,53,109],"represent":[4],"a":[5,59,67],"video":[6,54,125,128],"with":[7,37,89],"implicit":[8],"neural":[9],"representations":[10],"(INRs).":[11],"Classical":[12],"INRs":[13],"methods":[14],"generally":[15],"utilize":[16],"MLPs":[17,102],"map":[19],"input":[20],"coordinates":[21],"output":[23],"pixels.":[24],"While":[25],"some":[26],"recent":[27],"works":[28],"have":[29,115],"tried":[30],"directly":[32],"reconstruct":[33],"the":[34,44,72,79],"whole":[35,94],"image":[36],"CNNs.":[38,104],"However,":[39],"we":[40,57],"argue":[41],"that":[42],"both":[43],"above":[45],"pixel-wise":[46],"and":[47,71,84,103,127],"image-wise":[48,82],"strategies":[49],"are":[50],"not":[51],"favorable":[52],"data.":[55],"Instead,":[56],"propose":[58],"patch-wise":[60],"solution,":[61],"PS-NeRV,":[62],"which":[63],"represents":[64],"videos":[65],"as":[66,124],"function":[68],"of":[69,81],"patches":[70],"corresponding":[73],"patch":[74],"coordinate.":[75],"It":[76],"naturally":[77],"inherits":[78],"advantages":[80],"methods,":[83],"achieves":[85],"excellent":[86],"reconstruction":[87],"performance":[88],"fast":[90],"decoding":[91],"speed.":[92],"The":[93],"method":[95],"includes":[96],"conventional":[97],"modules,":[98],"like":[99],"positional":[100],"embedding,":[101],"also":[106],"introduce":[107],"AdaIN":[108],"enhance":[110],"intermediate":[111],"features.":[112],"Extensive":[113],"experiments":[114],"demonstrated":[116],"its":[117],"effectiveness":[118],"in":[119],"several":[120],"video-related":[121],"tasks,":[122],"such":[123],"compression":[126],"inpainting.":[129]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386598253","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":9},{"year":2023,"cited_by_count":3}],"updated_date":"2025-04-23T19:54:11.205855","created_date":"2023-09-12"}