{"id":"https://openalex.org/W3196196682","doi":"https://doi.org/10.1109/icip42928.2021.9506389","title":"Learning Imbalanced Datasets With Maximum Margin Loss","display_name":"Learning Imbalanced Datasets With Maximum Margin Loss","publication_year":2021,"publication_date":"2021-08-23","ids":{"openalex":"https://openalex.org/W3196196682","doi":"https://doi.org/10.1109/icip42928.2021.9506389","mag":"3196196682"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip42928.2021.9506389","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2206.05380","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061794843","display_name":"Haeyong Kang","orcid":null},"institutions":[{"id":"https://openalex.org/I157485424","display_name":"Korea Advanced Institute of Science and Technology","ror":"https://ror.org/05apxxy63","country_code":"KR","type":"funder","lineage":["https://openalex.org/I157485424"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Haeyong Kang","raw_affiliation_strings":["Korea Advanced Institute of Science and Technology,School of Electrical Engineering 291 Daehak-ro, Yuseong-gu,Daejeon,Republic of Korea,34141"],"affiliations":[{"raw_affiliation_string":"Korea Advanced Institute of Science and Technology,School of Electrical Engineering 291 Daehak-ro, Yuseong-gu,Daejeon,Republic of Korea,34141","institution_ids":["https://openalex.org/I157485424"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059033571","display_name":"Thang Vu","orcid":"https://orcid.org/0000-0003-0486-6349"},"institutions":[{"id":"https://openalex.org/I157485424","display_name":"Korea Advanced Institute of Science and Technology","ror":"https://ror.org/05apxxy63","country_code":"KR","type":"funder","lineage":["https://openalex.org/I157485424"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Thang Vu","raw_affiliation_strings":["Korea Advanced Institute of Science and Technology,School of Electrical Engineering 291 Daehak-ro, Yuseong-gu,Daejeon,Republic of Korea,34141"],"affiliations":[{"raw_affiliation_string":"Korea Advanced Institute of Science and Technology,School of Electrical Engineering 291 Daehak-ro, Yuseong-gu,Daejeon,Republic of Korea,34141","institution_ids":["https://openalex.org/I157485424"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5073287748","display_name":"Chang D. Yoo","orcid":"https://orcid.org/0000-0002-0756-7179"},"institutions":[{"id":"https://openalex.org/I157485424","display_name":"Korea Advanced Institute of Science and Technology","ror":"https://ror.org/05apxxy63","country_code":"KR","type":"funder","lineage":["https://openalex.org/I157485424"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Chang D. Yoo","raw_affiliation_strings":["Korea Advanced Institute of Science and Technology,School of Electrical Engineering 291 Daehak-ro, Yuseong-gu,Daejeon,Republic of Korea,34141"],"affiliations":[{"raw_affiliation_string":"Korea Advanced Institute of Science and Technology,School of Electrical Engineering 291 Daehak-ro, Yuseong-gu,Daejeon,Republic of Korea,34141","institution_ids":["https://openalex.org/I157485424"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.571,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":18,"citation_normalized_percentile":{"value":0.999923,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":null,"issue":null,"first_page":"1269","last_page":"1273"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.8289864}],"concepts":[{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.8289864},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5932485},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5260546},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39738926},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37027168}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip42928.2021.9506389","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2206.05380","pdf_url":"http://arxiv.org/pdf/2206.05380","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.05380","pdf_url":"https://arxiv.org/pdf/2206.05380","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2206.05380","pdf_url":"http://arxiv.org/pdf/2206.05380","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.81,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1596717185","https://openalex.org/W1861492603","https://openalex.org/W2194775991","https://openalex.org/W2280929120","https://openalex.org/W2579549467","https://openalex.org/W2622263826","https://openalex.org/W2753211788","https://openalex.org/W2767106145","https://openalex.org/W2913592748","https://openalex.org/W2921393178","https://openalex.org/W2947380870","https://openalex.org/W2951370366","https://openalex.org/W2962933664","https://openalex.org/W2963351448","https://openalex.org/W2963466847","https://openalex.org/W2963656735","https://openalex.org/W2963691377","https://openalex.org/W2970941190","https://openalex.org/W2995197345","https://openalex.org/W3034601242","https://openalex.org/W3035724871","https://openalex.org/W3103152812"],"related_works":["https://openalex.org/W4386462264","https://openalex.org/W4313488044","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W3209574120","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424","https://openalex.org/W2033914206"],"abstract_inverted_index":{"A":[0],"learning":[1,16],"algorithm":[2],"referred":[3],"to":[4,22,40],"as":[5,90],"Maximum":[6,60],"Margin":[7,61],"(MM)":[8,62],"is":[9],"proposed":[10],"for":[11,36,136],"considering":[12],"the":[13,18,24,30,44,53,73,96,105,116],"class-imbalance":[14],"data":[15],"issue:":[17],"trained":[19],"model":[20],"tends":[21],"predict":[23],"majority":[25],"of":[26,43,46,52,118,121],"classes":[27,38],"rather":[28],"than":[29],"minority":[31,37,54],"ones.":[32],"That":[33],"is,":[34],"underfitting":[35],"seems":[39],"be":[41],"one":[42],"challenges":[45],"generalization.":[47],"For":[48],"a":[49,58,68],"good":[50],"generalization":[51,70],"classes,":[55],"we":[56,114],"design":[57],"new":[59],"loss":[63,82,108],"function,":[64],"motivated":[65],"by":[66],"minimizing":[67],"margin-based":[69,124],"bound":[71],"through":[72],"shifting":[74],"decision":[75,125],"bound.":[76],"The":[77],"theoretically-principled":[78],"label-distribution-aware":[79],"margin":[80,107],"(LDAM)":[81],"was":[83],"successfully":[84],"applied":[85],"with":[86,95,128],"prior":[87],"strategies":[88],"such":[89],"re-weighting":[91],"or":[92],"re-sampling":[93],"along":[94],"effective":[97],"training":[98,130],"schedule.":[99],"However,":[100],"they":[101],"did":[102],"not":[103],"investigate":[104,115],"maximum":[106,123],"function":[109],"yet.":[110],"In":[111],"this":[112],"study,":[113],"performances":[117],"two":[119],"types":[120],"hard":[122],"boundary":[126],"shift":[127],"LDAM's":[129],"schedule":[131],"on":[132],"artificially":[133],"imbalanced":[134],"CIFAR-10/100":[135],"fair":[137],"comparisons":[138],"and":[139],"effectiveness.":[140]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3196196682","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":1}],"updated_date":"2025-04-17T01:55:00.888801","created_date":"2021-08-30"}