{"id":"https://openalex.org/W3194140113","doi":"https://doi.org/10.1109/icip42928.2021.9506339","title":"Using the Overlapping Score to Improve Corruption Benchmarks","display_name":"Using the Overlapping Score to Improve Corruption Benchmarks","publication_year":2021,"publication_date":"2021-08-23","ids":{"openalex":"https://openalex.org/W3194140113","doi":"https://doi.org/10.1109/icip42928.2021.9506339","mag":"3194140113"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip42928.2021.9506339","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2105.12357","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075732230","display_name":"Alfred Laugros","orcid":null},"institutions":[{"id":"https://openalex.org/I899635006","display_name":"Universit\u00e9 Grenoble Alpes","ror":"https://ror.org/02rx3b187","country_code":"FR","type":"education","lineage":["https://openalex.org/I899635006"]},{"id":"https://openalex.org/I170138621","display_name":"Atos (France)","ror":"https://ror.org/015w2wb33","country_code":"FR","type":"company","lineage":["https://openalex.org/I170138621"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Alfred Laugros","raw_affiliation_strings":["Atos (France)","Universite Grenoble Alpes"],"affiliations":[{"raw_affiliation_string":"Universite Grenoble Alpes","institution_ids":["https://openalex.org/I899635006"]},{"raw_affiliation_string":"Atos (France)","institution_ids":["https://openalex.org/I170138621"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081662880","display_name":"Alice Caplier","orcid":"https://orcid.org/0000-0002-5937-4627"},"institutions":[{"id":"https://openalex.org/I899635006","display_name":"Universit\u00e9 Grenoble Alpes","ror":"https://ror.org/02rx3b187","country_code":"FR","type":"education","lineage":["https://openalex.org/I899635006"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Alice Caplier","raw_affiliation_strings":["Universite Grenoble Alpes"],"affiliations":[{"raw_affiliation_string":"Universite Grenoble Alpes","institution_ids":["https://openalex.org/I899635006"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5036684183","display_name":"Matthieu Ospici","orcid":"https://orcid.org/0000-0002-7816-721X"},"institutions":[{"id":"https://openalex.org/I170138621","display_name":"Atos (France)","ror":"https://ror.org/015w2wb33","country_code":"FR","type":"company","lineage":["https://openalex.org/I170138621"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Matthieu Ospici","raw_affiliation_strings":["Atos (France)"],"affiliations":[{"raw_affiliation_string":"Atos (France)","institution_ids":["https://openalex.org/I170138621"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.407,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.756396,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"959","last_page":"963"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9853,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.7853941},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.78538525},{"id":"https://openalex.org/keywords/language-change","display_name":"Language Change","score":0.56840646},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.5212884}],"concepts":[{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.7853941},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.78538525},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7118129},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.6854323},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.66489184},{"id":"https://openalex.org/C2780027415","wikidata":"https://www.wikidata.org/wiki/Q524648","display_name":"Language change","level":2,"score":0.56840646},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.5212884},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4589421},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42602262},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.34580308},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3372504},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.10877225},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C124952713","wikidata":"https://www.wikidata.org/wiki/Q8242","display_name":"Literature","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip42928.2021.9506339","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://hal.science/hal-04713065","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2105.12357","pdf_url":"https://arxiv.org/pdf/2105.12357","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2105.12357","pdf_url":"https://arxiv.org/pdf/2105.12357","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.82,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1673923490","https://openalex.org/W2108598243","https://openalex.org/W2556882396","https://openalex.org/W2747308919","https://openalex.org/W2913848079","https://openalex.org/W2971028215","https://openalex.org/W2975797828","https://openalex.org/W2979442772","https://openalex.org/W3037492894","https://openalex.org/W3040002795","https://openalex.org/W3104668471","https://openalex.org/W3116074996","https://openalex.org/W3128637142","https://openalex.org/W4288281368","https://openalex.org/W4288363831","https://openalex.org/W4288404646","https://openalex.org/W4297745950","https://openalex.org/W4308831279"],"related_works":["https://openalex.org/W4379116102","https://openalex.org/W4309864825","https://openalex.org/W3211782752","https://openalex.org/W3210882018","https://openalex.org/W3207178610","https://openalex.org/W2970990331","https://openalex.org/W2966858528","https://openalex.org/W2378211422","https://openalex.org/W2151687600","https://openalex.org/W1482441085"],"abstract_inverted_index":{"Neural":[0],"Networks":[1],"are":[2,95],"sensitive":[3],"to":[4,27,48,77,92,108],"various":[5],"corruptions":[6,38,84,94,105],"that":[7,99],"usually":[8],"occur":[9],"in":[10,80],"real-world":[11],"applications":[12],"such":[13],"as":[14],"blurs,":[15],"noises,":[16],"low-lighting":[17],"conditions,":[18],"etc.":[19],"To":[20],"estimate":[21],"the":[22,87],"robustness":[23],"of":[24,36,55,59,89],"neural":[25,90],"networks":[26,91],"these":[28,93],"common":[29],"corruptions,":[30],"we":[31,65],"generally":[32],"use":[33],"a":[34,41,51,56,67],"group":[35],"modeled":[37],"gathered":[39],"into":[40,101],"benchmark.":[42],"Unfortunately,":[43],"no":[44],"objective":[45],"criterion":[46],"exists":[47],"determine":[49],"whether":[50],"benchmark":[52],"is":[53],"representative":[54],"large":[57],"diversity":[58],"independent":[60],"corruptions.":[61],"In":[62],"this":[63],"paper,":[64],"propose":[66],"metric":[68],"called":[69],"corruption":[70,81],"overlapping":[71],"score,":[72],"which":[73],"can":[74,106],"be":[75],"used":[76],"reveal":[78],"flaws":[79],"benchmarks.":[82],"Two":[83],"overlap":[85],"when":[86],"robustnesses":[88],"correlated.":[96],"We":[97],"argue":[98],"taking":[100],"account":[102],"overlappings":[103],"between":[104],"help":[107],"improve":[109],"existing":[110],"benchmarks":[111],"or":[112],"build":[113],"better":[114],"ones.":[115]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3194140113","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":2}],"updated_date":"2025-01-07T07:14:34.699761","created_date":"2021-08-30"}