{"id":"https://openalex.org/W2970027712","doi":"https://doi.org/10.1109/icip.2019.8803554","title":"When Causal Intervention Meets Adversarial Examples and Image Masking for Deep Neural Networks","display_name":"When Causal Intervention Meets Adversarial Examples and Image Masking for Deep Neural Networks","publication_year":2019,"publication_date":"2019-08-26","ids":{"openalex":"https://openalex.org/W2970027712","doi":"https://doi.org/10.1109/icip.2019.8803554","mag":"2970027712"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2019.8803554","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1902.03380","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5020376803","display_name":"Chao-Han Huck Yang","orcid":"https://orcid.org/0000-0003-2879-8811"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chao-Han Huck Yang","raw_affiliation_strings":["Georgia Institute of Technology, Atlanta, GA, USA"],"affiliations":[{"raw_affiliation_string":"Georgia Institute of Technology, Atlanta, GA, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062291234","display_name":"Yi-Chieh Liu","orcid":null},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yi-Chieh Liu","raw_affiliation_strings":["Georgia Institute of Technology, Atlanta, GA, USA"],"affiliations":[{"raw_affiliation_string":"Georgia Institute of Technology, Atlanta, GA, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050344371","display_name":"Pin\u2010Yu Chen","orcid":"https://orcid.org/0000-0003-1039-8369"},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"company","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Pin-Yu Chen","raw_affiliation_strings":["IBM Research, Yorktown Heights, NY, USA"],"affiliations":[{"raw_affiliation_string":"IBM Research, Yorktown Heights, NY, USA","institution_ids":["https://openalex.org/I1341412227"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001706958","display_name":"Xiaoli Ma","orcid":"https://orcid.org/0000-0002-3076-2589"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiaoli Ma","raw_affiliation_strings":["Georgia Institute of Technology, Atlanta, GA, USA"],"affiliations":[{"raw_affiliation_string":"Georgia Institute of Technology, Atlanta, GA, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5035383838","display_name":"Yichang Tsai","orcid":"https://orcid.org/0000-0002-6650-2279"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yi-Chang James Tsai","raw_affiliation_strings":["Georgia Institute of Technology, Atlanta, GA, USA"],"affiliations":[{"raw_affiliation_string":"Georgia Institute of Technology, Atlanta, GA, USA","institution_ids":["https://openalex.org/I130701444"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":20,"citation_normalized_percentile":{"value":0.842536,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"3811","last_page":"3815"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12859","display_name":"Cell Image Analysis Techniques","score":0.9645,"subfield":{"id":"https://openalex.org/subfields/1304","display_name":"Biophysics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.5346569}],"concepts":[{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.83567},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6953835},{"id":"https://openalex.org/C2777402240","wikidata":"https://www.wikidata.org/wiki/Q6783436","display_name":"Masking (illustration)","level":2,"score":0.6512964},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5863154},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5654733},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.5346569},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.512055},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32456315},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2019.8803554","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1902.03380","pdf_url":"https://arxiv.org/pdf/1902.03380","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.1902.03380","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1902.03380","pdf_url":"https://arxiv.org/pdf/1902.03380","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W2970027712"],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W1945616565","https://openalex.org/W200863923","https://openalex.org/W2103490241","https://openalex.org/W2108598243","https://openalex.org/W2295107390","https://openalex.org/W2460937040","https://openalex.org/W2526085503","https://openalex.org/W2581082771","https://openalex.org/W2590177913","https://openalex.org/W2750384547","https://openalex.org/W2753845591","https://openalex.org/W2764024122","https://openalex.org/W2773446523","https://openalex.org/W2787824550","https://openalex.org/W2887603965","https://openalex.org/W2899700230","https://openalex.org/W2962858109","https://openalex.org/W2962933288","https://openalex.org/W2963143631","https://openalex.org/W2963207607","https://openalex.org/W2963321993","https://openalex.org/W2963446712","https://openalex.org/W2963795951","https://openalex.org/W2964082701","https://openalex.org/W2988391718","https://openalex.org/W3101156210","https://openalex.org/W4247200422","https://openalex.org/W4250806791","https://openalex.org/W4289294411","https://openalex.org/W4300485340","https://openalex.org/W4300511536"],"related_works":["https://openalex.org/W4313346231","https://openalex.org/W4298079292","https://openalex.org/W4285785480","https://openalex.org/W3203790781","https://openalex.org/W3093978547","https://openalex.org/W3080754722","https://openalex.org/W2997056298","https://openalex.org/W2953536436","https://openalex.org/W2950183588","https://openalex.org/W2738001131"],"abstract_inverted_index":{"Discovering":[0],"and":[1,15,65,80,119],"exploiting":[2],"the":[3,52,94,136,160],"causality":[4],"in":[5,76,159],"deep":[6],"neural":[7],"networks":[8],"(DNNs)":[9],"are":[10],"crucial":[11],"challenges":[12],"for":[13,30,45,58,122,140,150],"understanding":[14,123],"reasoning":[16,47],"causal":[17,33,42,59],"effects":[18,54],"(CE)":[19],"on":[20,55,135],"an":[21],"explainable":[22],"visual":[23,46],"model.":[24,86],"\"Intervention\"":[25],"has":[26],"been":[27],"widely":[28],"used":[29],"recognizing":[31],"a":[32,41,77,84,90,117],"relation":[34],"ontologically.":[35],"In":[36,68],"this":[37],"paper,":[38],"we":[39,61],"propose":[40],"inference":[43],"framework":[44],"via":[48],"docalculus.":[49],"To":[50],"study":[51],"intervention":[53],"pixel-level":[56],"features":[57,75],"reasoning,":[60],"introduce":[62],"pixel-wise":[63],"masking":[64],"adversarial":[66,152,163],"perturbation.":[67],"our":[69],"framework,":[70],"CE":[71,98,115,147],"is":[72,116],"calculated":[73],"using":[74],"latent":[78],"space":[79],"perturbed":[81,101],"prediction":[82],"from":[83],"DNN-based":[85],"We":[87],"further":[88],"provide":[89],"first":[91],"look":[92],"into":[93],"characteristics":[95,158],"of":[96,99,162],"discovered":[97],"adversarially":[100],"images":[102],"generated":[103],"by":[104],"gradient-based":[105],"methods":[106,129],"1":[109],".":[110],"Experimental":[111],"results":[112],"show":[113],"that":[114],"competitive":[118],"robust":[120],"index":[121],"DNNs":[124],"when":[125],"compared":[126],"with":[127],"conventional":[128],"such":[130],"as":[131,154],"class-activation":[132],"mappings":[133],"(CAMs)":[134],"Chest":[137],"X-Ray-14":[138],"dataset":[139],"human-interpretable":[141],"feature(s)":[142],"(e.g.,":[143],"symptom)":[144],"reasoning.":[145],"Moreover,":[146],"holds":[148],"promises":[149],"detecting":[151],"examples":[153],"it":[155],"possesses":[156],"distinct":[157],"presence":[161],"perturbations.":[164]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2970027712","counts_by_year":[{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":9},{"year":2020,"cited_by_count":6}],"updated_date":"2024-12-14T16:40:36.453161","created_date":"2019-09-05"}