{"id":"https://openalex.org/W2970893893","doi":"https://doi.org/10.1109/icip.2019.8803469","title":"Visual Tracking Via Siamese Network With Global Similarity","display_name":"Visual Tracking Via Siamese Network With Global Similarity","publication_year":2019,"publication_date":"2019-08-26","ids":{"openalex":"https://openalex.org/W2970893893","doi":"https://doi.org/10.1109/icip.2019.8803469","mag":"2970893893"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2019.8803469","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5043121078","display_name":"Chao Fan","orcid":"https://orcid.org/0000-0003-2216-7576"},"institutions":[{"id":"https://openalex.org/I143868143","display_name":"Anhui University","ror":"https://ror.org/05th6yx34","country_code":"CN","type":"funder","lineage":["https://openalex.org/I143868143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chao Fan","raw_affiliation_strings":["Anhui University, Hefei, China"],"affiliations":[{"raw_affiliation_string":"Anhui University, Hefei, China","institution_ids":["https://openalex.org/I143868143"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100449192","display_name":"Yulong Wang","orcid":"https://orcid.org/0000-0001-8148-3099"},"institutions":[{"id":"https://openalex.org/I143868143","display_name":"Anhui University","ror":"https://ror.org/05th6yx34","country_code":"CN","type":"funder","lineage":["https://openalex.org/I143868143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yulong Wang","raw_affiliation_strings":["Anhui University, Hefei, China"],"affiliations":[{"raw_affiliation_string":"Anhui University, Hefei, China","institution_ids":["https://openalex.org/I143868143"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100398932","display_name":"Chenglong Li","orcid":"https://orcid.org/0000-0002-7233-2739"},"institutions":[{"id":"https://openalex.org/I143868143","display_name":"Anhui University","ror":"https://ror.org/05th6yx34","country_code":"CN","type":"funder","lineage":["https://openalex.org/I143868143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chenglong Li","raw_affiliation_strings":["Anhui University, Hefei, China"],"affiliations":[{"raw_affiliation_string":"Anhui University, Hefei, China","institution_ids":["https://openalex.org/I143868143"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5030720334","display_name":"Jin Tang","orcid":"https://orcid.org/0000-0001-8375-3590"},"institutions":[{"id":"https://openalex.org/I143868143","display_name":"Anhui University","ror":"https://ror.org/05th6yx34","country_code":"CN","type":"funder","lineage":["https://openalex.org/I143868143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jin Tang","raw_affiliation_strings":["Anhui University, Hefei, China"],"affiliations":[{"raw_affiliation_string":"Anhui University, Hefei, China","institution_ids":["https://openalex.org/I143868143"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"3985","last_page":"3989"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11963","display_name":"Impact of Light on Environment and Health","score":0.9374,"subfield":{"id":"https://openalex.org/subfields/2306","display_name":"Global and Planetary Change"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.9274,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bittorrent-tracker","display_name":"BitTorrent tracker","score":0.7574681},{"id":"https://openalex.org/keywords/tracking","display_name":"Tracking (education)","score":0.72448915},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.678364}],"concepts":[{"id":"https://openalex.org/C57501372","wikidata":"https://www.wikidata.org/wiki/Q2021268","display_name":"BitTorrent tracker","level":3,"score":0.7574681},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7322997},{"id":"https://openalex.org/C2775936607","wikidata":"https://www.wikidata.org/wiki/Q466845","display_name":"Tracking (education)","level":2,"score":0.72448915},{"id":"https://openalex.org/C56461940","wikidata":"https://www.wikidata.org/wiki/Q970687","display_name":"Eye tracking","level":2,"score":0.70719385},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6865271},{"id":"https://openalex.org/C184898388","wikidata":"https://www.wikidata.org/wiki/Q1435712","display_name":"Pairwise comparison","level":2,"score":0.68370354},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.678364},{"id":"https://openalex.org/C2776036281","wikidata":"https://www.wikidata.org/wiki/Q48769818","display_name":"Constraint (computer-aided design)","level":2,"score":0.58188415},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5109962},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.48704985},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.48451155},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32188225},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.27216262},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12991735},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C19417346","wikidata":"https://www.wikidata.org/wiki/Q7922","display_name":"Pedagogy","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2019.8803469","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1497265063","https://openalex.org/W182940129","https://openalex.org/W1915599933","https://openalex.org/W1955514522","https://openalex.org/W1964846093","https://openalex.org/W2034365297","https://openalex.org/W2089961441","https://openalex.org/W2117539524","https://openalex.org/W2124211486","https://openalex.org/W2154889144","https://openalex.org/W2158592639","https://openalex.org/W2343187456","https://openalex.org/W2408241409","https://openalex.org/W2470394683","https://openalex.org/W2518013266","https://openalex.org/W2556108308","https://openalex.org/W2608627404","https://openalex.org/W2775609985","https://openalex.org/W2776035257","https://openalex.org/W2797812763","https://openalex.org/W2799058067","https://openalex.org/W2799148928","https://openalex.org/W2886358368","https://openalex.org/W2894176037","https://openalex.org/W2899079342","https://openalex.org/W2962824803"],"related_works":["https://openalex.org/W4384788979","https://openalex.org/W2954509079","https://openalex.org/W2909390414","https://openalex.org/W2753886513","https://openalex.org/W2511178891","https://openalex.org/W2141888607","https://openalex.org/W2126676984","https://openalex.org/W2070920257","https://openalex.org/W178060743","https://openalex.org/W1765993298"],"abstract_inverted_index":{"Visual":[0],"tracking":[1,26,31,133,140],"is":[2,59],"a":[3,75],"very":[4],"important":[5],"and":[6,92,98,105],"challenging":[7],"problem":[8],"in":[9,66,101],"the":[10,67,82,94,102,109,120,124,128,143],"field":[11],"of":[12,96],"computer":[13],"vision.":[14],"In":[15,56,70,112],"recent":[16],"years,":[17],"Siamese":[18,38,125],"networks":[19,42],"have":[20],"been":[21],"widely":[22],"used":[23],"for":[24],"visual":[25],"due":[27],"to":[28,54,61,80,90,123],"their":[29,41],"fast":[30],"speed,":[32],"but":[33],"many":[34],"trackers":[35],"based":[36],"on":[37,108,130],"network":[39],"train":[40,81,103],"by":[43],"utilizing":[44],"either":[45],"pairwise":[46],"loss":[47,79],"or":[48],"triplet":[49],"loss,":[50],"which":[51],"easily":[52],"leads":[53],"over-fitting.":[55],"addition,":[57],"it":[58],"difficult":[60],"distinguish":[62],"some":[63],"hard":[64,110],"samples":[65,100],"training":[68],"samples.":[69,111],"this":[71],"paper,":[72],"we":[73,85,118],"propose":[74],"novel":[76],"global":[77],"similarity":[78],"network.":[83,126],"Specifically,":[84],"utilize":[86],"two":[87],"Gaussian":[88],"distributions":[89],"simulate":[91],"optimize":[93],"distribution":[95],"positive":[97],"negative":[99],"set":[104],"add":[106],"constraint":[107],"experiments,":[113],"without":[114],"any":[115],"other":[116],"modification,":[117],"apply":[119],"proposed":[121],"method":[122,137],"And":[127],"results":[129],"several":[131],"popular":[132],"benchmarks":[134],"show":[135],"our":[136],"achieves":[138],"superior":[139],"performance":[141],"than":[142],"baseline.":[144]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2970893893","counts_by_year":[],"updated_date":"2025-01-29T07:37:19.646033","created_date":"2019-09-05"}