{"id":"https://openalex.org/W2891558574","doi":"https://doi.org/10.1109/icip.2018.8451636","title":"GRANet: Global Refinement Atrous Convolutional Neural Network for Semantic Scene Segmentation","display_name":"GRANet: Global Refinement Atrous Convolutional Neural Network for Semantic Scene Segmentation","publication_year":2018,"publication_date":"2018-09-07","ids":{"openalex":"https://openalex.org/W2891558574","doi":"https://doi.org/10.1109/icip.2018.8451636","mag":"2891558574"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2018.8451636","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5054137460","display_name":"Feng Zhou","orcid":"https://orcid.org/0000-0001-9184-2040"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"funder","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhou Feng","raw_affiliation_strings":["State Key Laboratory of Virtual Reality Technology and Systems, Beihang University"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Virtual Reality Technology and Systems, Beihang University","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101685184","display_name":"Yong Hu","orcid":"https://orcid.org/0000-0003-2686-6606"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"funder","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hu Yong","raw_affiliation_strings":["School of New Media Art and Design, Beihang University"],"affiliations":[{"raw_affiliation_string":"School of New Media Art and Design, Beihang University","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5064912514","display_name":"Xukun Shen","orcid":"https://orcid.org/0000-0001-8509-9393"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"funder","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shen Xukun","raw_affiliation_strings":["School of New Media Art and Design, Beihang University"],"affiliations":[{"raw_affiliation_string":"School of New Media Art and Design, Beihang University","institution_ids":["https://openalex.org/I82880672"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.282,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.483447,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"1568","last_page":"1572"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/upsampling","display_name":"Upsampling","score":0.9109094},{"id":"https://openalex.org/keywords/pooling","display_name":"Pooling","score":0.7048806},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.62686527}],"concepts":[{"id":"https://openalex.org/C110384440","wikidata":"https://www.wikidata.org/wiki/Q1143270","display_name":"Upsampling","level":3,"score":0.9109094},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.75815165},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7345292},{"id":"https://openalex.org/C70437156","wikidata":"https://www.wikidata.org/wiki/Q7228652","display_name":"Pooling","level":2,"score":0.7048806},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.68193984},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6454281},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.62686527},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.52308226},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4546663},{"id":"https://openalex.org/C184337299","wikidata":"https://www.wikidata.org/wiki/Q1437428","display_name":"Semantics (computer science)","level":2,"score":0.45392698},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.34614426},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.2759481},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.14059255},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2018.8451636","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.84,"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1565402342","https://openalex.org/W1745334888","https://openalex.org/W1817277359","https://openalex.org/W1903029394","https://openalex.org/W1910657905","https://openalex.org/W1923697677","https://openalex.org/W2022508996","https://openalex.org/W2031489346","https://openalex.org/W2051458493","https://openalex.org/W2090518410","https://openalex.org/W2125849446","https://openalex.org/W2136378950","https://openalex.org/W2158305599","https://openalex.org/W2183182206","https://openalex.org/W2204696980","https://openalex.org/W2340897893","https://openalex.org/W2412782625","https://openalex.org/W2560023338","https://openalex.org/W2563705555","https://openalex.org/W2630837129"],"related_works":["https://openalex.org/W4300832495","https://openalex.org/W4287394948","https://openalex.org/W4214604401","https://openalex.org/W3202075396","https://openalex.org/W3119356360","https://openalex.org/W2987852271","https://openalex.org/W2967990525","https://openalex.org/W2949066288","https://openalex.org/W2810679507","https://openalex.org/W2559156603"],"abstract_inverted_index":{"The":[0,115],"main":[1],"problems":[2],"of":[3,42,49,61,92,112],"complex-scene":[4],"understanding":[5],"and":[6,17,125],"semantic":[7,34,84],"scene":[8,35],"segmentation":[9,85],"are":[10],"caused":[11,57],"by":[12,58],"mismatched":[13],"relationships,":[14],"confusion":[15],"categories,":[16],"inconspicuous":[18],"classes.":[19],"Towards":[20],"above":[21],"issues,":[22],"we":[23,44,69,95],"propose":[24,96],"a":[25,67,97],"global":[26,93,105],"refinement":[27],"atrous":[28,46,73],"convolutional":[29],"neural":[30],"network":[31],"(GRANet)":[32],"for":[33],"segmentation.":[36],"To":[37,53],"enlarge":[38],"the":[39,50,55,59,79,82,104,110,122],"receptive":[40],"field":[41],"filters,":[43],"use":[45,91],"convolution":[47,74],"instead":[48],"downsampling":[51],"operators.":[52],"handle":[54],"challenge":[56],"existence":[60],"objects":[62],"at":[63],"multiple":[64,71,98],"scales":[65],"in":[66],"scene,":[68],"adopt":[70],"rates":[72],"structure.":[75],"And":[76],"to":[77,102,108],"overcome":[78],"problem":[80],"that":[81],"current":[83],"architecture":[86],"can":[87],"not":[88],"make":[89],"good":[90],"information,":[94],"pooling":[99],"module":[100],"schemes":[101],"utilize":[103],"context":[106],"information":[107],"boost":[109],"performance":[111,120,128],"our":[113],"GRANet.":[114],"proposed":[116],"GRANet":[117],"achieves":[118],"state-of-the-art":[119,131],"on":[121,133],"SiftFlow":[123],"Dataset":[124],"attains":[126],"comparable":[127],"with":[129],"other":[130],"works":[132],"Cityscapes":[134],"dataset.":[135]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2891558574","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":1}],"updated_date":"2025-03-21T15:03:57.659392","created_date":"2018-09-27"}